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Introduction

Introduction - Idea
I Video Object Segmentation - partitioning Space-time Graph
I Nodes - pixels, relations in local neighborhoods
I The strongest cluster = the salient object segmentation
I Spectral clustering solution = the principal eigenvector of the

graph’s adjacency matrix
I Based on power iteration (without the explicit matrix - intractable)
I New and fast 3D filtering technique in the space-time feature volume
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Introduction

Introduction - Results
I Fast parallel implementation on GPU
I Suitable for online processing of video streams
I Features: the output of existing segmentation algorithms, without any

other supervision
I Consistent improvement over top SoTA methods on DAVIS-2016

dataset
I Both in unsupervised and semi-supervised tasks
I Same set of hyper-parameters
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Related Work

DAVIS and CNN Architectures

I Strong image-based backbone

I Pre-trained for object segmentation on other larger image datasets

I Adapt image segmentation solutions on videos (NOT designed for
space-time)

I Approaches
I Temporal/motion branch (previous frames/optical flow)
I Previous masks branch (for mask propagation)
I One-shot learning (fine-tune on the first video frame)
I Approaches derived from OSVOS [1] do not take the time axis into

account at all

I Heavily supervised post-processing refinement [7, 5]
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Related Work

Graph-based methods

I Graph representation
I nodes: pixels, super-pixels, voxels or image/video regions
I edges: undirected, modeled as symmetric similarity function
I Representation influences both accuracy and runtime

I Problem
I Partition a graph in 2 large components
I Elements are inter-connected through high affinities inside each

component

I Algos
I Spectral clustering algorithms (find smallest or leading eigenvectors)
I Laplacian: L = D−1/2MD−1/2, normalized L = I−D−1/2MD−1/2 or

unnormalized L = D−M
I Random walk matrix P = D−1M, the unnormalized adjacency matrix

M
I Graph cut, [normalized, average, min-max, mean, topological] cut
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Our approach

Mathematical formulation

I VOS - graph partitioning problem (foreground vs. background)

I Spatial-temporal graph (N = Nf × H ×W pixels)

I Node i represents a pixel in the space-time volume

I Nf = number of frames; (H,W ) = frame size

I Edge = similarity between 2 pixels Mi ,j (N × N adjacency matrix
M - symmetric and always non-negative, sparse - local connections)

I s and f = feature vectors of size N × 1, one value for each pixel

Mi ,j = spi spj e
−α(fi−fj )

2−βdist2i,j = spi spj e
−α(fi−fj )

2
Gi ,j

≈ spi spj [e0 − α(fi − fj)
2e0]Gi ,j

≈ spi spj︸︷︷︸
unary terms

[1− α(fi − fj)
2]Gi ,j︸ ︷︷ ︸

pairwise terms

.
(1)

xs = argmax
x

xTMx

‖x‖2
. (2)
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Our approach

Power iteration with pixel-wise iterations

xk+1
i ←

∑
j∈N (i)

Mi ,jx
k
j , (3)

xk+1
i ← αspi

∑
j∈N (i)

spj [α−1 − f2i − f2j + 2fi fj ]Gi ,jx
k
j , (4)

xk+1
i ← αspi (α−1 − f2i )

∑
j∈N (i)

spj Gi ,jx
k
j −

αspi
∑

j∈N (i)

spj f2j Gi ,jx
k
j +

2αspi fi
∑

j∈N (i)

spj fjGi ,jx
k
j .

(5)

I matrix size for a small video: 20 millions nodes

I replace sum over neighbourhood with 3D convolution
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Our approach

Power iteration using 3D convolutions

Xcrt ← Sp � (α−11− F2)� G3D ∗ (Sp � Xk)−
Sp � G3D ∗ (F2 � Sp � Xk)+

2Sp � F� G3D ∗ (F� Sp � Xk),

(6)

Xk+1 ← Xcrt

‖Xcrt‖2
, (7)

I ∗ = convolution over a 3D space-time volume; G3D = 3D Gaussian
filter; � = element-wise multiplication; 3D matrices Xk ,S,F - video
shape (Nf × H ×W ); 1 = 3D matrix with all values 1

I very fast matrix operations: 3 convolutions and 13 element-wise
matrix operations (multiplications and additions),

I local/easy to parallelize operations
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Our approach

Multiple feature channels

Mi ,j = spi spj [Nfeat −
Nfeat∑
c=1

αc(fc,i − fc,j)
2]Gi ,j . (8)

Xmulti
crt =

Nfeat∑
c=1

Xcrt(Fc), (9)

I Fc is a (3D) channel feature matrix

I We can adapt to the case of multiple feature channels for S
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Algorithm

Algorithm

Figure: Power iteration with 3D convolutions algorithm. At each iteration we pass
through the whole video and compute the updated soft-segmentation X . At Step
1 we warp Sw ,Xw ,Fw w.r.t the current frame, in a time window around it
[i − w , i + w ], using pixel-wise displacements according to optical flow
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Algorithm

Optical flow warping

Figure: Align nearby frames using the optical flow displacement, w.r.t the center
frame. The rows contain segmentation masks for five consecutive frames. The
first row has the original input segmentation for S. The second row contains the
new masks, after optical flow warping w.r.t center frame. Even though the optical
flow warping is not perfect, we notice that the masks per frame after warping are
more similar - thus they could form a stronger cluster in space and time.

I Remove motion and deformations differences between frames
(alignment)
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Algorithm

Online vs offline processing

Figure: When the video is a contiguous stream or if it is very large, instead of
applying power iterations on the full video, we can apply fewer iterations on
smaller video sub-windows, with similar effect. To speed up convergence, we
initialize the solution with the final solution over the previous sub-window (for the
frames that overlap).

I Partial iterations by applying SFSeg on smaller sub-volumes of video
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Algorithm

Numerical Complexity

Figure: Total runtime in logarithmic scale for 100 iterations, including the time
building the (big) adjacency matrix, for power iteration. For filtering algorithm,
for a 4 million nodes graph, the time for 100 iterations is 74 seconds.

I Lanczos method for sparse matrices: O(kNfNpNi )

I SFSeg full iteration: O(kNfNpNi ) - with highly parallelizable
operations; without explicit adjacency matrix

PhD - 3rd year, 1st semester report - 2019 April 23, 2019 18 / 32



Algorithm

Synthetic Example

Figure: Soft masks for a 6 frame video: The first row contains the input
segmentation mask, which is very noisy. The next line contains our SFSeg
segmentations (iter 5). Next row corresponds to Power Iteration (iter 5). The last
line contains the eigenvector computed with the numpy library.
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Experiments

Experimental Setup

I DAVIS dataset
I 50 video sequences, 3455 annotated frames of real-world scenes
I Densely annotated, high-resolution videos
I 2 tasks: semi-supervised and unsupervised (with/without access at first

frame GT)
I Train/Validation sets = 30/20 sequences
I We don’t use the training set

I SFSeg: input from pre-computed segmentations of the video
produced by top methods from DAVIS
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Experiments

Results

I Consistent improvement over: all top 3 unsupervised and all top 4
semi-supervised DAVIS-2016 methods

I We use the other methods input for: initialize the segmentation +
single channel feature map

I For all input methods inside the two groups (unsupervised and
semi-supervised task), the hyper-parameters are identical
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Experiments

Running time

I linear in the number of video pixels

I DAVIS-2016 experiments: +0.6 seconds per frame, on one GPU

I applied over the input segmentation from other solutions (4.5 sec per
frame OSVOS-S , 13 sec per frame PReMVOS)
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Experiments

Video Difficulty Attributes

Figure: Improvement in Jaccard score, per video attribute - average over all
videos, over all methods, per attribute, per task

I Consistent behaviour over tasks for SFSeg

I Biggest gain: attributes related to natural object shape variations
(Out-of-view, Scale-Variation, Dynamic Background, Fast-Motion, Appearance Change)

I Small gain: depend less on the object and more on external factors
(Background Clutter, Occlusion, Camera-Shake, Edge Ambiguity)
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Experiments

Qualitative Results I

1. PReMVOS [4] - 3rd place on semi-supervised, motocross-jump sequence

2. OnAVOS [7] - 1st place on semi-supervised, breakdance sequence

3. ARP [3] - 2nd place on unsupervised, dog sequence

I Input masks (col 2) received from top DAVIS-2016 solutions

I We see how the quality of the masks is increasing after applying
SFSeg (col 3), bringing the input masks closer to GT (col 4)
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Experiments

Qualitative Results II

I Input segmentation masks (col 2) from top methods on DAVIS-2016
ARP [3], FSEG [2], LVO [6]

I Mask evolution over SFSeg iterations

I We show the intermediate value of the mask at Iteration 2 (col 3)
and at the last Iteration 4 (col 4)
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Conclusion

Conclusions

I Segmentation in video as clustering in the Space-time Graph of
pixels

I Efficient spectral algorithm: Spectral Filtering Segmentation

I Transformed the standard power iteration for computing the principal
eigenvector of the graph adjacency matrix into a set of 3D
convolutions directly on 3D feature maps in the video volume

I Theoretical contribution makes the initial intractable problem
possible

I Consistently improves over top published VOS methods in both
unsupervised and semi-supervised scenarios at a relatively minor
additional computational cost
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Conclusion

Thank you!
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