Online Single Object Tracking

Elena Burceanu
elena.burceanu@gmail.com

IMAR Computer Vision 1/30

elena.burceanu@gmail.com

Tracking by Detection
Framework
Subcategories

STRUCK
Structured output tracking
Online optimization
Experiments and Results

KCF
Key observations
Training in DFT
Detection in DFT
Algorithm
Experiments and Results

IMAR Computer Vision

2/ 30

Tracking by Detection Framework

Tracking

» Tracking

» specific classes: pedestrians, cars, etc (integrate prior knowledge)
» generic (any objects, no special treatment)

» update (adaptive)
» accommodate with the changes in obj appearance
> keep the model learned so far

» some challenges

» changes in appearance: lightning, (fast, complex) motion, occlusions
» drifting: accumulating small errors (eg. bkg as train)

> decide bbox based on detection map

> labeler: artificial binarization step (similarity = bbox loU)

IMAR Computer Vision 3/30

Tracking by Detection Framework

Tracking by Detection - framework

"

HH L mm) Sampler ﬁﬁ
rcking B

1 $
Labeller
~ - TG
\+ -

» sampler and labeler
» chooses patches to update on (near previous detection)
> ex. label = threshold on the distance from the max activation
> learner (appearance model)
» binary classifier (foreground vs background)
» outputs the activation map for the target on each frame
> trains with samples based on previous frame detection
> tracker
> use the learner (detection) results to choose the next object location
» choose the maximum activation zone
IMAR Computer Vision 4/30

Tracking by Detection Framework

Tracking by Detection - Formal

» taxonomy
> [, - image at frame t

> p: - (predicted) target configuration in frame t (eg. bbox, + scale, +

rotation)
> y; - transformations on current frame wrt prev frame (translation,
scale, rotation)
> Xtyi'i‘) - features for patch in /,y; transformed (y) around p;
» scoring function g: x — R
» update
» sample transformations (near current detection p;): bboxes
> extract features from bboxes and label them
> update g
> propagation
» detect near previous position and choose maximum activation
» choose the transformation (y;) that maximizes g score
> prr1 = Ye(pr)

IMAR Computer Vision

5/ 30

Tracking by Detection Subcategories

Trackers categories

v

dictionary based trackers

» sparse combinations of elements from dict
> keep long and short term dict
» dict for different aspects of the target

ensemble based trackers

v

» combine result of multiple weak classifiers

\4

segmentation based trackers
> keep a segmentation model to better identify background in bbox

v

Next in presentation:

» structured learning (STRUCK)
» circulant matrices trackers (KCF)

others: oriented bbox

v

IMAR Computer Vision 6 /30

STRUCK

Structured Output Tracking with Kernels

Structured Output Tracking with Kernels, Sam Hare, Stuart Golodetz,
Amir Saffari, Vibhav Vineet, Ming-Ming Cheng, Stephen L. Hicks and
Philip H. S. Torr (PAMI 2015)

» online structured output SVM

> allow the output space (structured) to express the needs of the tracking

» remove the intermediate step of producing binary samples for the
classifier update

> the learner is directly connected to the tracker (predict the
transformation between 2 frames)

» bugeting (limit the number of support vectors)

IMAR Computer Vision 7 /30

STRUCK Structured output tracking

Structured output tracking

» generalize SVM for general output (not only for binary and multiclass
classification and regression)
» the scoring function (g) has direct access to y (the transformation)
» SVM (arbitrary input, binary output):
> f(x|w) = sign({w, ®(x)))
> 8(x, y|w) = y(w, ®(x)) = (w, (x)y)
> §i = f(xi|w) = argmaxye{fl,l}g(xivﬂw)
structured output SVM: (arbitrary input and output)
> g%, ylw) = (w, ®(x,y))
» Ji = f(xj|lw) = argmax,cyg(x;, y|w)

v

IMAR Computer Vision 8 /30

STRUCK Structured output tracking

Structured SVM

» Primal SMV
> J(w) = 3l[wl]?+ CY7& (miny,)

v

vV vy VY VvYy

st. Vi:&>0

s.t. Vi,Vy # yi o (w, ®(t;, yi) — ®(ti, y)) = Alyiny) = &
(Equivalent: & > A(yi,y) — [g(xi, yilw) — g(xi, y|w)]

A(yi,y) = 1—53(yi,y) (s5 - the overlap function loU)

ensure that g(t;, y;) is grater than g(t;,y) by a margin given by the
symmetric loss function A(y;,y) (different from the SVM threshold
binarization)

Dual SVM Formulation (and /3 reparametrization)

v

v

v

>

JB) = =35, Dy, yi)BY = 3 315,.5 875 k(ti,y. 1, 7) (maxs)
s.t. Vi,Vy : 87 < é(y,yi)C

st. >, 6/ =0

scoring: g(t,y) =", ; B k(ti, ¥, t,y)

> (t,-,y,-) . yi = the correct transformation of the object from py, in ps41
if By #0, (t,, ¥) - support vectors, t; - support pattern
BY > 0; ﬁly < 0,y # y; (one positive, the rest are negative)

v

v

IMAR Computer Vision

9/ 30

STRUCK Online optimization

Update SVM

» online optimization: LaRank (based on Sequential Minimal
Optimization + decompose in small sub-programs, solvable

analytically)
» coordinate ascent in SMO (update only 2 parameters, keep the rest
fixed)
y Algorithm 1 SMOSTEP
Yt Y+ u Require: m, y4,y—, S, 3, V, C
> = N
/8;1 /Bm + A 1: I]z(++) = I;Etmvy+atmwy+%
Y= _ Y- u (——) = k(tm, Y- tm, y—
> 6 - ﬂ - A k(-)—k(tmvy+atmay)
oJ(B %
> aiu) =0 - X = (0, min(, Gy) — B5)

s B B+

B = B =

: Update gradients
10: for (¢;,y) € S do

» find A\Y (unconstrained) and

2:
3:
4:
5.
6: Update coefficients
7
truncate to keep constraints)

> vy — 8 y 1 ke = ki, ¥y tm, y+)
B 12 k) =kt y,tm, y-)
. Y Y
» Q: how to choose y,y 7 IR AL 2 (ko ~ k)

IMAR Computer Vision 10 / 30

STRUCK Online optimization

Update SVM

» online optimization: LaRank (based on Sequential Minimal
Optimization + decompose in small sub-programs, solvable

analytically)
» coordinate ascent in SMO (update only 2 parameters, keep the rest
fixed)
y Algorithm 1 SMOSTEP
Yt Y+ u Require: m, y4,y—, S, 3, V, C
> = N
/8;1 /Bm + A 1: I]z(++) = I;Etmvy+atmwy+%
Y= _ Y- u (——) = k(tm, Y- tm, y—
> 6 - ﬂ - A k(-)—k(tmvy+atmay)
oJ(B %
> aiu) =0 - X = (0, min(, Gy) — B5)

s B B+

B = B =

: Update gradients
10: for (¢;,y) € S do

» find A\Y (unconstrained) and
truncate to keep constraints
11: k(+) =k(ti, ¥, tm,y+)

Y
» Vi = 2

8ﬂy 120 ke = k(ti,y,tm, y-)
» Q: how to choose yy,y_7? 13 Ve VA (ko ~ k)

14: end for

2:
3:
4:
5.
6: Update coefficients
7
8
9.

> highest gradient (argmax, Vi)

IMAR Computer Vision 10 / 30

STRUCK Online optimization

Update steps

» ProcessNew

» add the entry for the true label (¢, ym) as a positive SV
search for the most important sample to become a negative SV
new example (tm, ym), init: 8% =0

Y+ = Ym, y— = argmin,cy V¥, (iterate over all transformations)
SMO(m, y..,y_)

vV vyVvYy

IMAR Computer Vision 11 /30

STRUCK Online optimization

Update steps

» ProcessNew

» add the entry for the true label (¢, ym) as a positive SV

>
>
>
>

search for the most important sample to become a negative SV
new example (tm, ym), init: 3%, =0

Y+ = Ym, y— = argmin,cy V¥, (iterate over all transformations)
SMO(m, y..,y_)

» ProcessOld

|

>
>
>

revisiting a frame and potentially add new negative SV (and adjust 3)
random choose m (such that 8% < C; we want to be able to update 3)
Y+ = Ym, y— = argminycy Vi,

SMO(m, y.,y_)

IMAR Computer Vision 11 /30

STRUCK Online optimization

Update steps

» ProcessNew

» add the entry for the true label (¢, ym) as a positive SV
search for the most important sample to become a negative SV
new example (tm, ym), init: 8% =0

Y+ = Ym, y— = argmin,cy V¥, (iterate over all transformations)
SMO(m, y..,y_)

» ProcessOld

> revisiting a frame and potentially add new negative SV (and adjust 3)
» random choose m (such that 8% < C; we want to be able to update 3)
> Y4 =Ym, Y- = argmin,eyVy,

SMO(m, y.,y_)

» Optimize

>
>
>
>

v

» random choose m
» only modifies 8 of existing SV (y;+ = ym, y— = argminycy, V%)
> SMO(m7Y+aY—)

IMAR Computer Vision 11 /30

STRUCK Online optimization

Tracking loop

» Bugeting

» curse of kernelisation (storage space and eval time)
» remove the support vector that results in the smallest change to the
weight vector w (and update one more parameter s.t. 3° 3/ = 0)

» Aw = —3Y®(t,,y) + BYP(t,, y,) Q: Solution?!

IMAR Computer Vision 12 / 30

STRUCK

Tracking loop

» Bugeting

Online optimization

» curse of kernelisation (storage space and eval time)
» remove the support vector that results in the smallest change to the
weight vector w (and update one more parameter s.t. 3° 3/ = 0)

» Aw = —BY®(t,,y) + BY®(t,, y,) Q: Solution?! minimize ||Aw||?

» ProcessNew, ProcessOld:
might add SVs

> Nno = hr = 10
» for all SVs (t;,y) € S, they
store actualized: 37, VY

> if 37 =0, remove from S

» sample y from a grid (not all
2D transformations Y)

Algorithm 2 Struck tracking loop.

Require: f, ¢, p;, S;

1: P the

d object conf

sy = f(t)

Pey1 = Ye(Pr)
Update the SVM
PROCESSNEW(t, 1)
MAINTAINBUDGET()
for i =1tong do
PROCESSOLD()
MAINTAINBUDGET()
for j =1 to np do
OPTIMIZE()
end for

: end for

return pei1, Set1

IMAR Computer Vision

12 /30

STRUCK Experiments and Results

Practical Considerations

» Search spaces
» y: 2D translation, + scale; r = 30 px around previous point
» scale only with 5 % difference from previous frame
» 81 transformations (5x16 grid in 60 px)

> Kernels

> linear k(t,y,t,y) = (x{ﬁt),x;(:‘)>

» gaussian k(t,y,t,y) = exp(70||xty fyg 113)

> intersection 3 ZJ L min(iﬁ‘f)[j],x?ﬂ [i]), D - feature vector size
> Features

» raw 16x16 gray scale: 256D

» Haar (6 types, 2 scales, 4x4 grid): 192D

> histogram (4 levels pyramid, LxL size per level, 16 features): 480D
» kernel[i] + features[i] = best (Q: Why?)
» Multiple Kernel Learning (average more kernels for 1 result)

outperforms KCF (but very slow)

IMAR Computer Vision

13 /30

STRUCK Experiments and Results

Benchmark

v

Wu dataset, otb50
evaluate on categories: fast motion, occlusions, scale changes, etc

v

v

metrics
» precision = location error (% of frames whose predicted bboxes were
within a threshold of gt bbox) (20 px)
» success = overlap (% of frames whose loU (predicted, gt bbox) >
threshold (AuC)
Robustness
perturb the initialization in time and space
OnePassEval: first frame gt bbox
TemporalRobustnessEval: other starting frame
SpatialRobustnessEval: shifts + scales on initial bbox

v

v

v vy

IMAR Computer Vision 14 / 30

STRUCK

Experiments and Results

Tracker Variant Features Kernel Budget Success Precision
E SRE TRE SRE
Struck fkbRL100 Raw Linear 100 0471 0400 0.651 0.569
Struck fkbRL25 Raw Linear 25 0446 0377 0.611 0529
Struck fkbHG100 Haar Gaussian 100 0.504 0.434 0706 0.628
Struck fkbHG25 Haar Gaussian 25 0479 0406 0.665 0.579
ThunderStruck fkbRL100 Raw Linear 100 0459 0384 0633 0.546
ThunderStruck fkbRL25 Raw Linear 25 0367 0308 0494 0421
ThunderStruck ~ fkbHG100 Haar Gaussian 100 0.490 0417 0.681 0.602
ThunderStruck fkbHG25 Haar Gaussian 25 0410 0350 0.562 0479
Baseline - Haar Gaussian 100 0473 0401 0.656 0.567
ASLA - - - - 0485 0421 0620 0577
SCM - - - - 0513 0420 0.652 0575
TLD - - - - 0.448 0402 0.624 0573
KCF - - - - 0.556 0.463 0.774 0.683

TABLE 1: The tracking performance of single-scale, single-kernel Struck and ThunderStruck variants on the Wu et al.
[21] benchmark using various feature/kernel/budget combinations. We used search radii of 30 pixels for propagation and
60 pixels for learning, and set nr and no, the numbers of reprocessing and optimisation steps used for LaRank, to 10.

» why KCF is better?
» computational efficiency (HOG vs Haar)

» dense sampling (vs grid) - they've invalidated this assumption with

tests

> structured learning

» compare with a SVM with binary learner (overlap < 0.5 for negatives
and one positive)

IMAR Computer Vision

15 / 30

STRUCK Experiments and Results

Multi-kernel Results

Tracker Variant Features/Kernels Feature Count Success Precision
SRE TRE SRE
Struck mkIHGRL Haar/Gaussian + Raw/Linear 448 0476 0401 0.660 0.575
Struck mkIHGHI Haar/Gaussian + Histogram/Intersection 672 0.545 0.469 0.785 0.707
Struck mkIHIRL Histogram/Intersection + Raw/Linear 736 0494 0418 0.690 0.606
Struck mklHGHIRL Haar/Gaussian + Histogram/Intersection + Raw/Linear 928 0495 0422 0.692 0.610
Struck fkbHG100 Haar/Gaussian 192 0.504 0434 0706 0.628
Struck fkbHI100 Histogram/Intersection 480 0.517 0455 0734 0.679
Struck fkbRL100 Raw/Linear 256 0471 0400 0.651 0.569
KCF - - - 0.556 0463 0.774 0.683

TABLE 2: Comparing the tracking performance of some single-kernel variants of Struck with variants that use multiple
kernel learning (MKL). For all variants, we use a learning search radius r7, of 60 pixels, a propagation search radius
rp of 30 pixels and a support vector budget of 100, and set ng and no, respectively the numbers of reprocessing and
optimisation steps used for LaRank, to 10. We show the results of the KCF tracker for comparison purposes.

» multi-kernel (mkIHGHI) - very slow, not on CUDA, outperforms KCF

IMAR Computer Vision

16 / 30

STRUCK Experiments and Results

Qualitative Results

%

basketball_1 gir 1 lemming_1 mountai 1 skatingl_1 woman_1

Fig. 6: Example frames from benchmark sequences, comparing the results of Struck (variant mkIHGHI) with KCF [22],
SCM [49] and ASLA [51]. Videos of these results can be found at https://goo.gl/cJ1Dg7.

IMAR Computer Vision 17 / 30

STRUCK Experiments and Results

Conclusions

Tracker Variant Average FPS
Struck fkbRL100 209
Struck fkbHG100 20.8
Struck mkIHGHI 24

ThunderStruck fkbRL100 146.3
ThunderStruck fkbHG100 93.9
ThunderStruck r05_5 125.1
ThunderStruck ~ sHG95_105_1 199

TABLE 3: Comparing the average speed (in frames per
second) of a number of variants of Struck and Thunder-
Struck over the entire Wu benchmark. For details of the
parameters used and the tracking performance obtained for
each variant, see the corresponding experiments sections.

» fewer steps in LaRank, more scales (11)

» Conclusions

v

vV vy VvYy

structured output prediction

budget maintenance

cuda implementations

(not anymore) state of the art

best: large feature vectors + multi-kernel tracking

IMAR Computer Vision

18 / 30

KCF

KCF

High-Speed Tracking with Kernelized Correlation Filters, Joo F.
Henriques, Rui Caseiro, Pedro Martins, Jorge Batista (PAMI 2015)
» in the context of the discriminative classifier (target vs surrounding)
» augment dataset with translated + scaled patches (redundancies:
overlap)
> use a circulant data matrix, which is diagonal in Discrete Fourier
Transform space

> very fast: from O(D3) to O(Dlog(D))

IMAR Computer Vision 19 /30

KCF Key observations

Circulant matrices and Fourier

Base sample
Shifted by 1 element
Shifted by 2 elements

Ty T2 T3 o Tp C' (s =) =
Tn Ty Tz Tpol H
— = | Tp—1 Tp T1 -+ Tp—
X =0C(x)= oA -2 Shifted by n—1 elements

To ®3 T4 - Ty Figure 3: Illustration of a circulant matrix. The rows are cyclic
shifts of a vector image, or its translations in 1D. The same
properties carry over to circulant matrices containing 2D im-
ages.

v

Px = [Xp, X1, X2, . - .y Xn—1] T

{PUx|u=0,n—1} - set of all shifts

all circulant matrices are made diagonal by the Discrete Fourier
Transform (DFT)

X = Fdiag(%)FH (circular matrix eigen decomposition)

% = DFT(x) = y/nFx, F is constant

v

v

v

v

IMAR Computer Vision 20 / 30

KCF Key observations

Cyclic shifts

-0 0 O N 1- ...n

P = 01 0 ... 0 Base sample -1 30

Figure 2: Examples of vertical cyclic shifts of a base sample.
Our Fourier domain formulation allows us to train a tracker
with all possible cyclic shifts of a base sample, both vertical and

0O 0 ... 1 0 horizontal, without iterating them explicitly. Artifacts from the
L - wrapped-around edges can be seen (top of the left-most image),
but are mitigated by the cosine window and padding.

=
o
o
o

Storage Bottleneck Speed

Random Sampling Learning algorithm

Features from

(p random subwindows (Struct. SVM [4], | 10- 25 FPS
subwindows) P Boost [3,6]...)
Dense Sampling .
(all subwindows, Featur‘es from Fast Fourier 390 FPS
one image Transform

proposed method)

IMAR Computer Vision 21 /30

KCF Training in DFT

Train in DFT (Linear Ridge Regression)

classical
J(w) = Z;I(LIWHX:' - YI2)2 + >\||W|2\§
J(w) = IIXHW = Y3 + Allwl i
min,, J — g =0
w = (XHX + Xp)~1XHy, O(D?+ D?N) complexity
interesting

v

vV vy VvYy

v

» matrix inversion lemma:
(P’1 + BTRle) IBTR-1 = PBT(BPBT + R)
» R=1Iy,B=X,P=)\"1Ip
» w = XH(XXH" + XIy)~ty, O(N3 + N2D) complexity
X - circulant
w = (F x diag(x QO £*)FH + M) "1 Fdiag(%*)FHy

*Qy
RO KA

v

v

v
>
I

IMAR Computer Vision 22 /30

KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) |

v

starting from w = X7 (XXH" 4+ Xy) "1y

XXT =K

a=(K+ My)ty

w=XTa=3 ax

fF(x)=wlx=Yaixx =3 aik(x, x) = (K¥) T«
Kernelized Ridge Regression: o = (K + Al)~ly

v

\4

v

v

v

IMAR Computer Vision 23 /30

KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) Il

» a=(K+)1t
» Theorem: Kernel matrix K of a circular matrix C(x) is circulant if ¥
unitary matrix M (MM T = 1), k(x,x") = k(Mx, Mx")
> k(x,,xj) = k(Px, Pix) = k(MP'x, MPix)
» M =P — ki j = k(x, PU=Dmodny) — K is circulant
> k™ - first row of the circular K (generating vector)

» K is circulant - & = =%
B A

IMAR Computer Vision 24 / 30

KCF Detection in DFT

Detection in DFT

» Detection
> more general definition: k' = k(x’, P"~1x) - kernel correlation
» K% = C(k**), kK - kernel correlation between image x and patch z;
circulant in base vectors permutations (x, z)
> i(z) = QKZ)T *
» f(z) = k** % &, a vector containing the output for all cyclic shifts of z
» Kernel correlation
» dot product (polynomial kernel)
> kX = k(X PIx) = g(X'TPx) = kX = k(C(x)X')
> k= g(FH(&" QX))
» RBF and Gaussian kernel
> kixx’ _ k(X/’Piflx) _ h(”X/T 7 Pi71XH2)
> k;o(/ — k(x/, Pi—lx) — h(||X/T||2 + ||Pi_1x|\2 _ 2X/TPi—1X)
> k= h(|IXTIP + IIxI P - 2F (5T O X))
> k= exp(— L (|IXTIP + (x| = 2F (& O F)))
» Multiple Channels:
K = exp(= (XTI + [[x][> = 2F 1 (X 22 O R0)))

IMAR Computer Vision 25 /30

Algorithm

KCF Algorithm

Inputs
+ x: training image patch, m x n x ¢
« y: regression target, Gaussian-shaped, m x n
« z: test image patch, m xn x ¢
Output
. responses: detection score for each location, m x n

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = ££ft2(y) ./ (££ft2(k) + lambda);
end

function responses = detect (alphaf, x, z, sigma)
k = kernel_correlation(z, x, sigma);
responses = real (ifft2(alphaf . £ft2(k)));
end

function k = kernel_correlation(xl, x2, sigma)

c = ifft2 (sum(conj (£ft2(x1)) .* £ft2(x2), 3));
d = x1(:)"*x1(:) + x2(:)"*x2(:) - 2 * c;
k = exp(-1 / sigma”2 x abs(d) / numel(d));

end

> train a new model at the new position

> linearly interpolate the obtained values of & and x with the ones from
the previous frame

IMAR Computer Vision

26 / 30

Results

KCF Experiments and Results

Mean Mean
Algorithm Feature precision FPS
@0 px)
KCF 73.2% 172
Proposed DCF HOG 72.8% 292
KCF Raw 56.0% 154
DCF pixels 45.1% 278
Struck [7] 65.6% 20
TLD [4] 60.8% 28
Other MOSSE [9] 43.1% 615
algorithms MIL [5] 475% 38
ORIA [14] 457% 9
CT [3] 40.6% 64

Table 1: Summary of experimental results on the 50 videos
dataset. The reported quantities are averaged over all videos.

Reported speeds include feature computation (e.g. HOG).

IMAR Computer Vision

27 / 30

Results by category

Out-of-plane rotation (39 sequences)

KCF Experiments and Results

Fast motion (17 sequences)

llumination variation (25 sequences)

o8 = o7} o7 = —
o7 T 08 05| =
06 -
_ _0s 05
805 8 §
8 go4 go4
04
& =K o 06 78] & < —FFon OB 07T
== = DCF on HOG [0712] 0.3 03] == = DCF on HOG [0.69]
03 I
Ry LD 0837)
02 02 oof M K e it
3 k)
st o7
01 01 01
)
) | o B cnran s |
o 70 2 30 E o 70 2 30 E) o 0 2 30 o 50
Location error threshold Location error threshold Location error threshold
Scale variation (28 sequences) Motion blur (12 sequences) Low resolution (4 sequences)
o o
07 07 08
086 0.6| 05
0s 05
204 2 04 2
H H H
& =T oo o & & 09
03 s o es 03
st 0
o
0.2 —chiun raw pixsts [0.492] 0.2]
oo
0.1 ORIA [0.445] 0.1 o1
e ——
Pty vt
° 10 ° 10 10

Figure 7: Precision plots for 6 attributes of the dataset. Best viewed in color. In-plane rotation was left out due to space constraints.
Its results are virtually identical to those for out-of-plane rotation (above), since they share almost the same set of sequences.

20 30
Location error threshold

20 a0
Location error threshold

IMAR Computer Vision

20 30
Location error threshold

28 / 30

KCF Experiments and Results

Qualitative Results

Kernelized Correlation Filter (proposed) ~ TLD Struck

Figure 1: Qualitative results for the proposed Kernelized Correlation Filter (KCF), compared with the top-performing Struck and
TLD. Best viewed on a high-resolution screen. The chosen kernel is Gaussian, on HOG features. These snapshots were taken at
the midpoints of the 50 videos of a recent benchmark [11]. Missing trackers are denoted by an “x”. KCF outperforms both Struck
and TLD, despite its minimal implementation and running at 172 FPS (see Algorithm 1, and Table 1).

IMAR Computer Vision 29 / 30

KCF Experiments and Results

Other Questions?

S

IMAR Computer Vision 30/ 30

	Tracking by Detection
	Framework
	Subcategories

	STRUCK
	Structured output tracking
	Online optimization
	Experiments and Results

	KCF
	Key observations
	Training in DFT
	Detection in DFT
	Algorithm
	Experiments and Results

