A Spectral Approach to Unsupervised Object Segmentation in Video

> Elena Burceanu elena.burceanu@gmail.com PhD - 3rd year, 1st semester report

> > April 23, 2019

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

Introduction

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

Introduction

Introduction - Idea

- Video Object Segmentation partitioning Space-time Graph
- Nodes pixels, relations in local neighborhoods
- The strongest cluster = the salient object segmentation
- Spectral clustering solution = the principal eigenvector of the graph's adjacency matrix
- Based on power iteration (without the explicit matrix intractable)
- New and fast 3D filtering technique in the space-time feature volume

Introduction - Results

- Fast parallel implementation on GPU
- Suitable for online processing of video streams
- Features: the output of existing segmentation algorithms, without any other supervision
- Consistent improvement over top SoTA methods on DAVIS-2016 dataset
- Both in unsupervised and semi-supervised tasks
- Same set of hyper-parameters

Related Work

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

DAVIS and CNN Architectures

- Strong image-based backbone
- Pre-trained for object segmentation on other larger image datasets
- Adapt image segmentation solutions on videos (NOT designed for space-time)
- Approaches
 - **Temporal/motion branch** (previous frames/optical flow)
 - Previous masks branch (for mask propagation)
 - One-shot learning (fine-tune on the first video frame)
 - Approaches derived from OSVOS [1] do not take the time axis into account at all
- Heavily supervised post-processing refinement [7, 5]

Graph-based methods

- Graph representation
 - **nodes**: pixels, super-pixels, voxels or image/video regions
 - edges: undirected, modeled as symmetric similarity function
 - Representation influences both accuracy and runtime
- Problem
 - Partition a graph in 2 large components
 - Elements are inter-connected through high affinities inside each component
- Algos
 - Spectral clustering algorithms (find smallest or leading eigenvectors)
 - Laplacian: $L = D^{-1/2}MD^{-1/2}$, normalized $L = I D^{-1/2}MD^{-1/2}$ or unnormalized L = D M
 - Random walk matrix P = D⁻¹M, the unnormalized adjacency matrix M
 - Graph cut, [normalized, average, min-max, mean, topological] cut

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

Mathematical formulation

- VOS graph partitioning problem (foreground vs. background)
- Spatial-temporal graph ($N = N_f \times H \times W$ pixels)
- Node i represents a pixel in the space-time volume
- N_f = number of frames; (H, W) = frame size
- Edge = similarity between 2 pixels M_{i,j} (N × N adjacency matrix M - symmetric and always non-negative, sparse - local connections)
- **s** and $\mathbf{f} =$ feature vectors of size $N \times 1$, one value for each pixel

$$\mathbf{M}_{i,j} = \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} e^{-\alpha(\mathbf{f}_{i} - \mathbf{f}_{j})^{2} - \beta \mathbf{dist}_{i,j}^{2}} = \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} e^{-\alpha(\mathbf{f}_{i} - \mathbf{f}_{j})^{2}} \mathbf{G}_{i,j}$$

$$\approx \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} [e^{0} - \alpha(\mathbf{f}_{i} - \mathbf{f}_{j})^{2} e^{0}] \mathbf{G}_{i,j}$$

$$\approx \underbrace{\mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p}}_{\text{unary terms}} \underbrace{[1 - \alpha(\mathbf{f}_{i} - \mathbf{f}_{j})^{2}] \mathbf{G}_{i,j}}_{\text{pairwise terms}}.$$
(1)

Mathematical formulation

- VOS graph partitioning problem (foreground vs. background)
- Spatial-temporal graph ($N = N_f \times H \times W$ pixels)
- Node i represents a pixel in the space-time volume
- N_f = number of frames; (H, W) = frame size
- Edge = similarity between 2 pixels M_{i,j} (N × N adjacency matrix M - symmetric and always non-negative, sparse - local connections)
- **s** and $\mathbf{f} =$ feature vectors of size $N \times 1$, one value for each pixel

$$\mathbf{M}_{i,j} = \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} e^{-\alpha (\mathbf{f}_{i} - \mathbf{f}_{j})^{2} - \beta \operatorname{dist}_{i,j}^{2}} = \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} \mathbf{e}^{-\alpha (\mathbf{f}_{i} - \mathbf{f}_{j})^{2}} \mathbf{G}_{i,j}$$

$$\approx \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} [e^{0} - \alpha (\mathbf{f}_{i} - \mathbf{f}_{j})^{2} e^{0}] \mathbf{G}_{i,j}$$

$$\approx \underbrace{\mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p}}_{\text{unary terms}} \underbrace{[1 - \alpha (\mathbf{f}_{i} - \mathbf{f}_{j})^{2}] \mathbf{G}_{i,j}}_{\text{pairwise terms}}.$$

$$\mathbf{x}_{s} = \operatorname*{argmax}_{\mathbf{x}} \frac{\mathbf{x}^{T} \mathbf{M} \mathbf{x}}{\|\mathbf{x}\|_{2}}.$$
(2)

PhD - 3rd year, 1st semester report - 2019 April 23, 2019 10 / 32

Power iteration with pixel-wise iterations

$$\mathbf{x}_{i}^{k+1} \leftarrow \sum_{j \in \mathcal{N}(i)} \mathbf{M}_{i,j} \mathbf{x}_{j}^{k},$$
 (3)

Power iteration with pixel-wise iterations

$$\mathbf{x}_{i}^{k+1} \leftarrow \sum_{j \in \mathcal{N}(i)} \mathbf{M}_{i,j} \mathbf{x}_{j}^{k},$$
(3)

$$\mathbf{x}_{i}^{k+1} \leftarrow \alpha \mathbf{s}_{i}^{p} \sum_{j \in \mathcal{N}(i)} \mathbf{s}_{j}^{p} [\alpha^{-1} - \mathbf{f}_{i}^{2} - \mathbf{f}_{j}^{2} + 2\mathbf{f}_{i}\mathbf{f}_{j}] \mathbf{G}_{i,j} \mathbf{x}_{j}^{k},$$
(4)

Power iteration with pixel-wise iterations

$$\mathbf{x}_{i}^{k+1} \leftarrow \sum_{j \in \mathcal{N}(i)} \mathbf{M}_{i,j} \mathbf{x}_{j}^{k},$$
 (3)

$$\mathbf{x}_{i}^{k+1} \leftarrow \alpha \mathbf{s}_{i}^{p} \sum_{j \in \mathcal{N}(i)} \mathbf{s}_{j}^{p} [\alpha^{-1} - \mathbf{f}_{i}^{2} - \mathbf{f}_{j}^{2} + 2\mathbf{f}_{i}\mathbf{f}_{j}] \mathbf{G}_{i,j} \mathbf{x}_{j}^{k},$$
(4)

$$\mathbf{x}_{i}^{k+1} \leftarrow \alpha \mathbf{s}_{i}^{p} (\alpha^{-1} - \mathbf{f}_{i}^{2}) \sum_{j \in \mathcal{N}(i)} \mathbf{s}_{j}^{p} \mathbf{G}_{i,j} \mathbf{x}_{j}^{k} - \alpha \mathbf{s}_{i}^{p} \sum_{j \in \mathcal{N}(i)} \mathbf{s}_{j}^{p} \mathbf{f}_{j}^{2} \mathbf{G}_{i,j} \mathbf{x}_{j}^{k} + 2\alpha \mathbf{s}_{i}^{p} \mathbf{f}_{i} \sum_{j \in \mathcal{N}(i)} \mathbf{s}_{j}^{p} \mathbf{f}_{j} \mathbf{G}_{i,j} \mathbf{x}_{j}^{k}.$$

matrix size for a small video: 20 millions nodes

replace sum over neighbourhood with 3D convolution

PhD - 3rd year, 1st semester report - 2019

(5)

Power iteration using 3D convolutions

$$\mathbf{X}_{crt} \leftarrow \mathbf{S}^{p} \odot (\alpha^{-1}\mathbf{1} - \mathbf{F}^{2}) \odot G_{3D} * (\mathbf{S}^{p} \odot \mathbf{X}^{k}) - \\ \mathbf{S}^{p} \odot G_{3D} * (\mathbf{F}^{2} \odot \mathbf{S}^{p} \odot \mathbf{X}^{k}) + \\ 2\mathbf{S}^{p} \odot \mathbf{F} \odot G_{3D} * (\mathbf{F} \odot \mathbf{S}^{p} \odot \mathbf{X}^{k}),$$

(6)

Power iteration using 3D convolutions

$$\mathbf{X}_{crt} \leftarrow \mathbf{S}^{p} \odot (\alpha^{-1}\mathbf{1} - \mathbf{F}^{2}) \odot G_{3D} * (\mathbf{S}^{p} \odot \mathbf{X}^{k}) - \mathbf{S}^{p} \odot G_{3D} * (\mathbf{F}^{2} \odot \mathbf{S}^{p} \odot \mathbf{X}^{k}) +$$
(6)
$$2\mathbf{S}^{p} \odot \mathbf{F} \odot G_{3D} * (\mathbf{F} \odot \mathbf{S}^{p} \odot \mathbf{X}^{k}),$$
$$\mathbf{X}^{k+1} \leftarrow \frac{\mathbf{X}_{crt}}{\|\mathbf{X}_{crt}\|_{2}},$$
(7)

- ▶ * = convolution over a 3D space-time volume; $G_{3D} = 3D$ Gaussian filter; \odot = element-wise multiplication; 3D matrices \mathbf{X}^k , \mathbf{S} , \mathbf{F} video shape $(N_f \times H \times W)$; $\mathbf{1} = 3D$ matrix with all values 1
- very fast matrix operations: 3 convolutions and 13 element-wise matrix operations (multiplications and additions),
- local/easy to parallelize operations

Multiple feature channels

$$\mathbf{M}_{i,j} = \mathbf{s}_i^{p} \mathbf{s}_j^{p} [N_{feat} - \sum_{c=1}^{N_{feat}} \alpha_c (\mathbf{f}_{c,i} - \mathbf{f}_{c,j})^2] \mathbf{G}_{i,j}.$$
 (8)

Multiple feature channels

$$\mathbf{M}_{i,j} = \mathbf{s}_{i}^{p} \mathbf{s}_{j}^{p} [N_{feat} - \sum_{c=1}^{N_{feat}} \alpha_{c} (\mathbf{f}_{c,i} - \mathbf{f}_{c,j})^{2}] \mathbf{G}_{i,j}.$$

$$\mathbf{X}_{crt}^{multi} = \sum_{c=1}^{N_{feat}} \mathbf{X}_{crt} (\mathbf{F}_{c}),$$
(9)

- **F**_c is a (3D) channel feature matrix
- ▶ We can adapt to the case of multiple feature channels for S

 $\overline{c=1}$

Algorithm

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

Algorithm

Algorithm

Data: S - unary feature maps for video F - defines pairwise feature maps for video Result: X - salient object segmentation in video $1 X \leftarrow S$ 2 for iter in $[1..N_i]$ do for i in $[1..N_f]$ do 3 4 // Step 1. Apply Optical flow warp \mathbf{T}_{OF} for a temporal window around frame i: $\mathbf{S}_w, \mathbf{X}_w, \mathbf{F}_w \leftarrow T_{OF}(\mathbf{S}, \mathbf{X}, \mathbf{F})[i - w : i + w]$ 5 6 7 // Step 2. Compute new mask: $\mathbf{T1} \leftarrow (\alpha^{-1}\mathbf{1} - \mathbf{F}_{w}^{2}) \odot G_{3D} * (\mathbf{S}_{w}^{p} \odot \mathbf{X}_{w})$ 8 $\mathbf{T2} \leftarrow -G_{3D} * (\mathbf{F}_{uv}^2 \odot \mathbf{S}_{uv}^p \odot \mathbf{X}_{uv})$ 9 $\mathbf{T3} \leftarrow 2\mathbf{F}_w \odot G_{3D} * (\mathbf{F}_w \odot \mathbf{S}_w^p \odot \mathbf{X}_w)$ 10 11 $\mathbf{X}_{new}[i] \leftarrow \mathbf{S}_w^p \odot (\mathbf{T1} + \mathbf{T2} + \mathbf{T3})$ end 13 $\mathbf{X} \leftarrow \operatorname{normalize}(\mathbf{X}_{new})$ 14 15 end

Figure: Power iteration with 3D convolutions algorithm. At each iteration we pass through the whole video and compute the updated soft-segmentation X. At Step 1 we warp S_w, X_w, F_w w.r.t the current frame, in a time window around it [i - w, i + w], using pixel-wise displacements according to optical flow

Algorithm

Optical flow warping

Figure: Align nearby frames using the optical flow displacement, w.r.t the center frame. The rows contain segmentation masks for five consecutive frames. The first row has the original input segmentation for S. The second row contains the new masks, after optical flow warping w.r.t center frame. Even though the optical flow warping is not perfect, we notice that the masks per frame after warping are more similar - thus they could form a stronger cluster in space and time.

Remove motion and deformations differences between frames (alignment)

Online vs offline processing

Figure: When the video is a contiguous stream or if it is very large, instead of applying power iterations on the full video, we can apply fewer iterations on smaller video sub-windows, with similar effect. To speed up convergence, we initialize the solution with the final solution over the previous sub-window (for the frames that overlap).

Partial iterations by applying SFSeg on smaller sub-volumes of video

Numerical Complexity

Figure: Total runtime in logarithmic scale for 100 iterations, including the time building the (big) adjacency matrix, for power iteration. For filtering algorithm, for a 4 million nodes graph, the time for 100 iterations is 74 seconds.

- Lanczos method for sparse matrices: $O(kN_fN_pN_i)$
- SFSeg full iteration: O(kN_f N_p N_i) with highly parallelizable operations; without explicit adjacency matrix

18/32

Synthetic Example

Figure: Soft masks for a 6 frame video: The first row contains the input segmentation mask, which is very noisy. The next line contains our SFSeg segmentations (iter 5). Next row corresponds to Power Iteration (iter 5). The last line contains the eigenvector computed with the numpy library.

Experiments

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

PhD - 3rd year, 1st semester report - 2019

April 23, 2019 20 / 32

Experimental Setup

DAVIS dataset

- ▶ 50 video sequences, 3455 annotated frames of real-world scenes
- Densely annotated, high-resolution videos
- 2 tasks: semi-supervised and unsupervised (with/without access at first frame GT)
- Train/Validation sets = 30/20 sequences
- We don't use the training set
- SFSeg: input from pre-computed segmentations of the video produced by top methods from DAVIS

Experiments

Results

Task	Input Method	Input Method (J)	SFSeg + Input Method (J)	Relative Boost (%)
Unsup DAVIS	PDB [26]	77.2	77.3	+0.44
	ARP [12]	76.2	77.7	+6.30
	LVO [27]	75.9	78.8	+12.03
	FSEG [10]	70.7	71.9	+4.10
Sup DAVIS	OnAVOS [28]	86.1	86.3	+1.44
	OSVOS-S [17]	85.6	86.0	+2.78
	PReMVOS [16]	84.9	85.3	+2.65

- Consistent improvement over: all top 3 unsupervised and all top 4 semi-supervised DAVIS-2016 methods
- We use the other methods input for: initialize the segmentation + single channel feature map
- For all input methods inside the two groups (unsupervised and semi-supervised task), the hyper-parameters are identical

Running time

- linear in the number of video pixels
- DAVIS-2016 experiments: +0.6 seconds per frame, on one GPU
- applied over the input segmentation from other solutions (4.5 sec per frame OSVOS-S , 13 sec per frame PReMVOS)

Video Difficulty Attributes

Figure: Improvement in Jaccard score, per video attribute - average over all videos, over all methods, per attribute, per task

- Consistent behaviour over tasks for SFSeg
- **Biggest gain**: attributes related to natural object shape variations

(Out-of-view, Scale-Variation, Dynamic Background, Fast-Motion, Appearance Change)

Small gain: depend less on the object and more on external factors

(Background Clutter, Occlusion, Camera-Shake, Edge Ambiguity)

Qualitative Results I

- 1. PReMVOS [4] 3rd place on semi-supervised, motocross-jump sequence
- 2. OnAVOS [7] 1st place on semi-supervised, breakdance sequence
- 3. ARP [3] 2nd place on unsupervised, dog sequence
- Input masks (col 2) received from top DAVIS-2016 solutions
- We see how the quality of the masks is increasing after applying SFSeg (col 3), bringing the input masks closer to GT (col 4)

Qualitative Results II

- Input segmentation masks (col 2) from top methods on DAVIS-2016 ARP [3], FSEG [2], LVO [6]
- Mask evolution over SFSeg iterations
- We show the intermediate value of the mask at Iteration 2 (col 3) and at the last Iteration 4 (col 4)

Outline

Introduction

Related Work

Our approach

Algorithm

Experiments

Conclusion

Conclusions

- Segmentation in video as clustering in the Space-time Graph of pixels
- Efficient spectral algorithm: Spectral Filtering Segmentation
- Transformed the standard power iteration for computing the principal eigenvector of the graph adjacency matrix into a set of 3D convolutions directly on 3D feature maps in the video volume
- Theoretical contribution makes the initial intractable problem possible
- Consistently improves over top published VOS methods in both unsupervised and semi-supervised scenarios at a relatively minor additional computational cost

Thank you!

April 23, 2019 29 / 32

References I

 Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool.
 One-shot video object segmentation.
 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5320–5329, 2017.

Suyog Jain, Bo Xiong, and Kristen Grauman. Fusionseg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos. arXiv preprint arXiv:1701.05384, 2017.

🔋 Yeong Jun Koh and Chang-Su Kim.

Primary object segmentation in videos based on region augmentation and reduction.

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7417–7425, 2017.

30 / 32

References II

 Jonathon Luiten, Paul Voigtlaender, and Bastian Leibe. Premvos: Proposal-generation, refinement and merging for video object segmentation. *Asian Conference on Computer Vision*, 2018.
 K.-K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. Video object segmentation without temporal information. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2018.

P. Tokmakov, K. Alahari, and C. Schmid. Learning video object segmentation with visual memory. *ICCV*, 2017.

References III

Paul Voigtlaender and Bastian Leibe.

Online adaptation of convolutional neural networks for video object segmentation.

BMVC, 2017.