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Tracking by Detection Framework

Tracking

I Tracking
I specific classes: pedestrians, cars, etc (integrate prior knowledge)
I generic (any objects, no special treatment)

I update (adaptive)
I accommodate with the changes in obj appearance
I keep the model learned so far

I some challenges
I changes in appearance: lightning, (fast, complex) motion, occlusions
I drifting: accumulating small errors (eg. bkg as train)
I decide bbox based on detection map
I labeler: artificial binarization step (similarity = bbox IoU)
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Tracking by Detection Framework

Tracking by Detection - framework

I sampler and labeler
I chooses patches to update on (near previous detection)
I ex. label = threshold on the distance from the max activation

I learner (appearance model)
I binary classifier (foreground vs background)
I outputs the activation map for the target on each frame
I trains with samples based on previous frame detection

I tracker
I use the learner (detection) results to choose the next object location
I choose the maximum activation zone
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Tracking by Detection Framework

Tracking by Detection - Formal

I taxonomy
I It - image at frame t
I pt - (predicted) target configuration in frame t (eg. bbox, + scale, +

rotation)
I yt - transformations on current frame wrt prev frame (translation,

scale, rotation)
I x

y(pt)
t+1 - features for patch in It+1 transformed (y) around pt

I scoring function g : χ 7→ R
I update

I sample transformations (near current detection pt): bboxes
I extract features from bboxes and label them
I update g

I propagation
I detect near previous position and choose maximum activation
I choose the transformation (yt) that maximizes g score
I pt+1 = yt(pt)
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Tracking by Detection Subcategories

Trackers categories

I dictionary based trackers
I sparse combinations of elements from dict
I keep long and short term dict
I dict for different aspects of the target

I ensemble based trackers
I combine result of multiple weak classifiers

I segmentation based trackers
I keep a segmentation model to better identify background in bbox

I Next in presentation:
I structured learning (STRUCK)
I circulant matrices trackers (KCF)

I others: oriented bbox
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STRUCK

Structured Output Tracking with Kernels

Structured Output Tracking with Kernels, Sam Hare, Stuart Golodetz,
Amir Saffari, Vibhav Vineet, Ming-Ming Cheng, Stephen L. Hicks and
Philip H. S. Torr (PAMI 2015)

I online structured output SVM
I allow the output space (structured) to express the needs of the tracking
I remove the intermediate step of producing binary samples for the

classifier update
I the learner is directly connected to the tracker (predict the

transformation between 2 frames)

I bugeting (limit the number of support vectors)
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STRUCK Structured output tracking

Structured output tracking

I generalize SVM for general output (not only for binary and multiclass
classification and regression)

I the scoring function (g) has direct access to y (the transformation)
I SVM (arbitrary input, binary output):

I f (x |w) = sign(〈w ,Φ(x)〉)
I g(x , y |w) = y〈w ,Φ(x)〉 = 〈w ,Φ(x)y〉
I ŷi = f (xi |w) = argmaxy∈{−1,1}g(xi , y |w)

I structured output SVM: (arbitrary input and output)
I g(x , y |w) = 〈w ,Φ(x , y)〉
I ŷi = f (xi |w) = argmaxy∈Y g(xi , y |w)
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STRUCK Structured output tracking

Structured SVM
I Primal SMV

I J(w) = 1
2 ||w ||

2 + C
∑n

1 ξi (minw )
I s.t. ∀i : ξi ≥ 0
I s.t. ∀i ,∀y 6= yi : 〈w ,Φ(ti , yi )− Φ(ti , y)〉 ≥ ∆(yi , y)− ξi
I (Equivalent: ξi ≥ ∆(yi , y)− [g(xi , yi |w)− g(xi , y |w)]
I ∆(yi , y) = 1− sop (yi , y) (sop - the overlap function IoU)
I ensure that g(ti , yi ) is grater than g(ti , y) by a margin given by the

symmetric loss function ∆(yi , y) (different from the SVM threshold
binarization)

I Dual SVM Formulation (and β reparametrization)
I J(β) = −

∑
i,y ∆(y , yi )β

y
i −

1
2

∑
i,j,y ,ỹ β

y
i β

ỹ
j k(ti , y , tj , ỹ) (maxβ)

I s.t. ∀i ,∀y : βy
i ≤ δ(y , yi )C

I s.t.
∑

y β
y
i = 0

I scoring: g(t, y) =
∑

i,ỹ β
ỹ
i k(ti , ỹ , t, y)

I (ti , yi ) : yi = the correct transformation of the object from pti in pti+1

I if βỹi 6= 0, (ti , ỹ) - support vectors, ti - support pattern

I βyii > 0; βỹi < 0, ỹ 6= yi (one positive, the rest are negative)
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STRUCK Online optimization

Update SVM
I online optimization: LaRank (based on Sequential Minimal

Optimization + decompose in small sub-programs, solvable
analytically)

I coordinate ascent in SMO (update only 2 parameters, keep the rest
fixed)

I β
y+
m = βy+m + λu

I β
y−
m = β

y−
m − λu

I ∂J(β)
∂λu = 0

I find λu (unconstrained) and
truncate to keep constraints

I ∇y
m = ∂J

∂βy
m

I Q: how to choose y+, y−?

I highest gradient (argmaxy∇y
m)
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STRUCK Online optimization

Update steps

I ProcessNew
I add the entry for the true label (tm, ym) as a positive SV
I search for the most important sample to become a negative SV
I new example (tm, ym), init: βy

m = 0
I y+ = ym, y− = argminy∈Y∇y

m (iterate over all transformations)
I SMO(m, y+, y−)

I ProcessOld
I revisiting a frame and potentially add new negative SV (and adjust β)
I random choose m (such that βym

m < C ; we want to be able to update β)
I y+ = ym, y− = argminy∈Y∇y

m
I SMO(m, y+, y−)

I Optimize
I random choose m
I only modifies β of existing SV (y+ = ym, y− = argminy∈Ym∇y

m)
I SMO(m, y+, y−)
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STRUCK Online optimization

Tracking loop

I Bugeting

I curse of kernelisation (storage space and eval time)
I remove the support vector that results in the smallest change to the

weight vector w (and update one more parameter s.t.
∑

y β
y
i = 0)

I ∆w = −βy
r Φ(tr , y) + βy

r Φ(tr , yr ) Q: Solution?!

minimize ||∆w ||2

I ProcessNew, ProcessOld:
might add SVs

I nO = nR = 10

I for all SVs (ti , y) ∈ S , they
store actualized: βyi ,∇

y
i

I if βyi = 0, remove from S

I sample y from a grid (not all
2D transformations Y )
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STRUCK Experiments and Results

Practical Considerations

I Search spaces
I y: 2D translation, + scale; r = 30 px around previous point
I scale only with 5 % difference from previous frame
I 81 transformations (5x16 grid in 60 px)

I Kernels
I linear k(t, y , t, y) = 〈xy(pt)t+1 , x

y(pt)

t+1
〉

I gaussian k(t, y , t, y) = exp(−σ||xy(pt)t+1 − x
y(pt)

t+1
||22)

I intersection 1
2

∑D
j=1 min(x

y(pt)
t+1 [j ], x

y(pt)

t+1
[j ]), D - feature vector size

I Features
I raw 16x16 gray scale: 256D
I Haar (6 types, 2 scales, 4x4 grid): 192D
I histogram (4 levels pyramid, LxL size per level, 16 features): 480D

I kernel[i] + features[i] = best (Q: Why?)

I Multiple Kernel Learning (average more kernels for 1 result)
outperforms KCF (but very slow)
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STRUCK Experiments and Results

Benchmark

I Wu dataset, otb50

I evaluate on categories: fast motion, occlusions, scale changes, etc
I metrics

I precision = location error (% of frames whose predicted bboxes were
within a threshold of gt bbox) (20 px)

I success = overlap (% of frames whose IoU (predicted, gt bbox) >
threshold (AuC)

I Robustness
I perturb the initialization in time and space
I OnePassEval: first frame gt bbox
I TemporalRobustnessEval: other starting frame
I SpatialRobustnessEval: shifts + scales on initial bbox
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STRUCK Experiments and Results

Results

I why KCF is better?
I computational efficiency (HOG vs Haar)
I dense sampling (vs grid) - they’ve invalidated this assumption with

tests

I structured learning
I compare with a SVM with binary learner (overlap < 0.5 for negatives

and one positive)
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STRUCK Experiments and Results

Multi-kernel Results

I multi-kernel (mklHGHI) - very slow, not on CUDA, outperforms KCF
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STRUCK Experiments and Results

Qualitative Results
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STRUCK Experiments and Results

Conclusions

I fewer steps in LaRank, more scales (11)
I Conclusions

I structured output prediction
I budget maintenance
I cuda implementations
I (not anymore) state of the art
I best: large feature vectors + multi-kernel tracking

IMAR Computer Vision 18 / 30



KCF

KCF

High-Speed Tracking with Kernelized Correlation Filters, Joo F.
Henriques, Rui Caseiro, Pedro Martins, Jorge Batista (PAMI 2015)

I in the context of the discriminative classifier (target vs surrounding)

I augment dataset with translated + scaled patches (redundancies:
overlap)

I use a circulant data matrix, which is diagonal in Discrete Fourier
Transform space

I very fast: from O(D3) to O(Dlog(D))
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KCF Key observations

Circulant matrices and Fourier

I Px = [xn, x1, x2, . . . , xn−1]T

I {Pux |u = 0, n − 1} - set of all shifts

I all circulant matrices are made diagonal by the Discrete Fourier
Transform (DFT)

I X = Fdiag(x̂)FH (circular matrix eigen decomposition)

I x̂ = DFT (x) =
√
nFx , F is constant
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KCF Key observations

Cyclic shifts

P =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 0
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KCF Training in DFT

Train in DFT (Linear Ridge Regression)

I classical
I J(w) =

∑
i (w

Hxi − yi )
2 + λ||w ||22

I J(w) = ||XHW − Y ||22 + λ||w ||22
I minwJ → ∂J

∂w = 0
I w = (XHX + λID)−1XHy , O(D3 + D2N) complexity

I interesting
I matrix inversion lemma:

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1

I R = IN , B = X , P = λ−1ID
I w = XH(XXH + λIN)−1y , O(N3 + N2D) complexity

I X - circulant

I w = (F ∗ diag(x̂
⊙

x̂∗)FH + λI )−1Fdiag(x̂∗)FHy

I ŵ = x̂∗
⊙

ŷ
x̂
⊙

x̂∗+λ
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KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) I

I starting from w = XH(XXH + λIN)−1y

I XXT = K

I α = (K + λIN)−1y

I w = XTα =
∑

i αixi
I f (x) = wT x =

∑
i αix

T
i x =

∑
i αik(xi , x) = (K x)Tα

I Kernelized Ridge Regression: α = (K + λI )−1y
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KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) II

I α = (K + λI )−1y
I Theorem: Kernel matrix K of a circular matrix C(x) is circulant if ∀

unitary matrix M (MMT = I ), k(x , x ′) = k(Mx ,Mx ′)
I k(xi , xj) = k(P ix ,P jx) = k(MP ix ,MP jx)
I M = P−i → ki,j = k(x ,P(j−i)modnx)→ K is circulant
I kxx - first row of the circular K (generating vector)

I K is circulant → α̂ = ŷ

k̂xx+λ
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KCF Detection in DFT

Detection in DFT
I Detection

I more general definition: kxx′

i = k(x ′,P i−1x) - kernel correlation
I K z = C (kxz), kxz - kernel correlation between image x and patch z;

circulant in base vectors permutations (x, z)
I f (z) = (K z)T ∗ α
I f̂ (z) = k̂xz ∗ α̂, a vector containing the output for all cyclic shifts of z

I Kernel correlation
I dot product (polynomial kernel)

I kxx′
i = k(x ′,P i−1x) = g(x ′TP i−1x)→ kxx′ = k(C(x)x ′)

I kxx′ = g(F−1(x̂∗
⊙

x̂ ′))
I RBF and Gaussian kernel

I kxx′
i = k(x ′,P i−1x) = h(||x ′T − P i−1x ||2)

I kxx′
i = k(x ′,P i−1x) = h(||x ′T ||2 + ||P i−1x ||2 − 2x ′TP i−1x)

I kxx′ = h(||x ′T ||2 + ||x ||2 − 2F−1(x̂∗
⊙

x̂ ′))
I kxx′ = exp(− 1

σ2 (||x ′T ||2 + ||x ||2 − 2F−1(x̂∗
⊙

x̂ ′)))

I Multiple Channels:
kxx

′
= exp(− 1

σ2 (||x ′T ||2 + ||x ||2 − 2F−1(
∑

c x̂
∗
c

⊙
x̂ ′c)))
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KCF Algorithm

Algorithm

I train a new model at the new position

I linearly interpolate the obtained values of α and x with the ones from
the previous frame
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KCF Experiments and Results

Results

IMAR Computer Vision 27 / 30



KCF Experiments and Results

Results by category
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KCF Experiments and Results

Qualitative Results
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KCF Experiments and Results

Other Questions?
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