
Online Single Object Tracking

Elena Burceanu
elena.burceanu@gmail.com

IMAR Computer Vision 1 / 30

elena.burceanu@gmail.com

Tracking by Detection
Framework
Subcategories

STRUCK
Structured output tracking
Online optimization
Experiments and Results

KCF
Key observations
Training in DFT
Detection in DFT
Algorithm
Experiments and Results

IMAR Computer Vision 2 / 30

Tracking by Detection Framework

Tracking

I Tracking
I specific classes: pedestrians, cars, etc (integrate prior knowledge)
I generic (any objects, no special treatment)

I update (adaptive)
I accommodate with the changes in obj appearance
I keep the model learned so far

I some challenges
I changes in appearance: lightning, (fast, complex) motion, occlusions
I drifting: accumulating small errors (eg. bkg as train)
I decide bbox based on detection map
I labeler: artificial binarization step (similarity = bbox IoU)

IMAR Computer Vision 3 / 30

Tracking by Detection Framework

Tracking by Detection - framework

I sampler and labeler
I chooses patches to update on (near previous detection)
I ex. label = threshold on the distance from the max activation

I learner (appearance model)
I binary classifier (foreground vs background)
I outputs the activation map for the target on each frame
I trains with samples based on previous frame detection

I tracker
I use the learner (detection) results to choose the next object location
I choose the maximum activation zone

IMAR Computer Vision 4 / 30

Tracking by Detection Framework

Tracking by Detection - Formal

I taxonomy
I It - image at frame t
I pt - (predicted) target configuration in frame t (eg. bbox, + scale, +

rotation)
I yt - transformations on current frame wrt prev frame (translation,

scale, rotation)
I x

y(pt)
t+1 - features for patch in It+1 transformed (y) around pt

I scoring function g : χ 7→ R
I update

I sample transformations (near current detection pt): bboxes
I extract features from bboxes and label them
I update g

I propagation
I detect near previous position and choose maximum activation
I choose the transformation (yt) that maximizes g score
I pt+1 = yt(pt)

IMAR Computer Vision 5 / 30

Tracking by Detection Subcategories

Trackers categories

I dictionary based trackers
I sparse combinations of elements from dict
I keep long and short term dict
I dict for different aspects of the target

I ensemble based trackers
I combine result of multiple weak classifiers

I segmentation based trackers
I keep a segmentation model to better identify background in bbox

I Next in presentation:
I structured learning (STRUCK)
I circulant matrices trackers (KCF)

I others: oriented bbox

IMAR Computer Vision 6 / 30

STRUCK

Structured Output Tracking with Kernels

Structured Output Tracking with Kernels, Sam Hare, Stuart Golodetz,
Amir Saffari, Vibhav Vineet, Ming-Ming Cheng, Stephen L. Hicks and
Philip H. S. Torr (PAMI 2015)

I online structured output SVM
I allow the output space (structured) to express the needs of the tracking
I remove the intermediate step of producing binary samples for the

classifier update
I the learner is directly connected to the tracker (predict the

transformation between 2 frames)

I bugeting (limit the number of support vectors)

IMAR Computer Vision 7 / 30

STRUCK Structured output tracking

Structured output tracking

I generalize SVM for general output (not only for binary and multiclass
classification and regression)

I the scoring function (g) has direct access to y (the transformation)
I SVM (arbitrary input, binary output):

I f (x |w) = sign(〈w ,Φ(x)〉)
I g(x , y |w) = y〈w ,Φ(x)〉 = 〈w ,Φ(x)y〉
I ŷi = f (xi |w) = argmaxy∈{−1,1}g(xi , y |w)

I structured output SVM: (arbitrary input and output)
I g(x , y |w) = 〈w ,Φ(x , y)〉
I ŷi = f (xi |w) = argmaxy∈Y g(xi , y |w)

IMAR Computer Vision 8 / 30

STRUCK Structured output tracking

Structured SVM
I Primal SMV

I J(w) = 1
2 ||w ||

2 + C
∑n

1 ξi (minw)
I s.t. ∀i : ξi ≥ 0
I s.t. ∀i ,∀y 6= yi : 〈w ,Φ(ti , yi)− Φ(ti , y)〉 ≥ ∆(yi , y)− ξi
I (Equivalent: ξi ≥ ∆(yi , y)− [g(xi , yi |w)− g(xi , y |w)]
I ∆(yi , y) = 1− sop (yi , y) (sop - the overlap function IoU)
I ensure that g(ti , yi) is grater than g(ti , y) by a margin given by the

symmetric loss function ∆(yi , y) (different from the SVM threshold
binarization)

I Dual SVM Formulation (and β reparametrization)
I J(β) = −

∑
i,y ∆(y , yi)β

y
i −

1
2

∑
i,j,y ,ỹ β

y
i β

ỹ
j k(ti , y , tj , ỹ) (maxβ)

I s.t. ∀i ,∀y : βy
i ≤ δ(y , yi)C

I s.t.
∑

y β
y
i = 0

I scoring: g(t, y) =
∑

i,ỹ β
ỹ
i k(ti , ỹ , t, y)

I (ti , yi) : yi = the correct transformation of the object from pti in pti+1

I if βỹi 6= 0, (ti , ỹ) - support vectors, ti - support pattern

I βyii > 0; βỹi < 0, ỹ 6= yi (one positive, the rest are negative)

IMAR Computer Vision 9 / 30

STRUCK Online optimization

Update SVM
I online optimization: LaRank (based on Sequential Minimal

Optimization + decompose in small sub-programs, solvable
analytically)

I coordinate ascent in SMO (update only 2 parameters, keep the rest
fixed)

I β
y+
m = βy+m + λu

I β
y−
m = β

y−
m − λu

I ∂J(β)
∂λu = 0

I find λu (unconstrained) and
truncate to keep constraints

I ∇y
m = ∂J

∂βy
m

I Q: how to choose y+, y−?

I highest gradient (argmaxy∇y
m)

IMAR Computer Vision 10 / 30

STRUCK Online optimization

Update SVM
I online optimization: LaRank (based on Sequential Minimal

Optimization + decompose in small sub-programs, solvable
analytically)

I coordinate ascent in SMO (update only 2 parameters, keep the rest
fixed)

I β
y+
m = βy+m + λu

I β
y−
m = β

y−
m − λu

I ∂J(β)
∂λu = 0

I find λu (unconstrained) and
truncate to keep constraints

I ∇y
m = ∂J

∂βy
m

I Q: how to choose y+, y−?

I highest gradient (argmaxy∇y
m)

IMAR Computer Vision 10 / 30

STRUCK Online optimization

Update steps

I ProcessNew
I add the entry for the true label (tm, ym) as a positive SV
I search for the most important sample to become a negative SV
I new example (tm, ym), init: βy

m = 0
I y+ = ym, y− = argminy∈Y∇y

m (iterate over all transformations)
I SMO(m, y+, y−)

I ProcessOld
I revisiting a frame and potentially add new negative SV (and adjust β)
I random choose m (such that βym

m < C ; we want to be able to update β)
I y+ = ym, y− = argminy∈Y∇y

m
I SMO(m, y+, y−)

I Optimize
I random choose m
I only modifies β of existing SV (y+ = ym, y− = argminy∈Ym∇y

m)
I SMO(m, y+, y−)

IMAR Computer Vision 11 / 30

STRUCK Online optimization

Update steps

I ProcessNew
I add the entry for the true label (tm, ym) as a positive SV
I search for the most important sample to become a negative SV
I new example (tm, ym), init: βy

m = 0
I y+ = ym, y− = argminy∈Y∇y

m (iterate over all transformations)
I SMO(m, y+, y−)

I ProcessOld
I revisiting a frame and potentially add new negative SV (and adjust β)
I random choose m (such that βym

m < C ; we want to be able to update β)
I y+ = ym, y− = argminy∈Y∇y

m
I SMO(m, y+, y−)

I Optimize
I random choose m
I only modifies β of existing SV (y+ = ym, y− = argminy∈Ym∇y

m)
I SMO(m, y+, y−)

IMAR Computer Vision 11 / 30

STRUCK Online optimization

Update steps

I ProcessNew
I add the entry for the true label (tm, ym) as a positive SV
I search for the most important sample to become a negative SV
I new example (tm, ym), init: βy

m = 0
I y+ = ym, y− = argminy∈Y∇y

m (iterate over all transformations)
I SMO(m, y+, y−)

I ProcessOld
I revisiting a frame and potentially add new negative SV (and adjust β)
I random choose m (such that βym

m < C ; we want to be able to update β)
I y+ = ym, y− = argminy∈Y∇y

m
I SMO(m, y+, y−)

I Optimize
I random choose m
I only modifies β of existing SV (y+ = ym, y− = argminy∈Ym∇y

m)
I SMO(m, y+, y−)

IMAR Computer Vision 11 / 30

STRUCK Online optimization

Tracking loop

I Bugeting

I curse of kernelisation (storage space and eval time)
I remove the support vector that results in the smallest change to the

weight vector w (and update one more parameter s.t.
∑

y β
y
i = 0)

I ∆w = −βy
r Φ(tr , y) + βy

r Φ(tr , yr) Q: Solution?!

minimize ||∆w ||2

I ProcessNew, ProcessOld:
might add SVs

I nO = nR = 10

I for all SVs (ti , y) ∈ S , they
store actualized: βyi ,∇

y
i

I if βyi = 0, remove from S

I sample y from a grid (not all
2D transformations Y)

IMAR Computer Vision 12 / 30

STRUCK Online optimization

Tracking loop

I Bugeting

I curse of kernelisation (storage space and eval time)
I remove the support vector that results in the smallest change to the

weight vector w (and update one more parameter s.t.
∑

y β
y
i = 0)

I ∆w = −βy
r Φ(tr , y) + βy

r Φ(tr , yr) Q: Solution?! minimize ||∆w ||2

I ProcessNew, ProcessOld:
might add SVs

I nO = nR = 10

I for all SVs (ti , y) ∈ S , they
store actualized: βyi ,∇

y
i

I if βyi = 0, remove from S

I sample y from a grid (not all
2D transformations Y)

IMAR Computer Vision 12 / 30

STRUCK Experiments and Results

Practical Considerations

I Search spaces
I y: 2D translation, + scale; r = 30 px around previous point
I scale only with 5 % difference from previous frame
I 81 transformations (5x16 grid in 60 px)

I Kernels
I linear k(t, y , t, y) = 〈xy(pt)t+1 , x

y(pt)

t+1
〉

I gaussian k(t, y , t, y) = exp(−σ||xy(pt)t+1 − x
y(pt)

t+1
||22)

I intersection 1
2

∑D
j=1 min(x

y(pt)
t+1 [j], x

y(pt)

t+1
[j]), D - feature vector size

I Features
I raw 16x16 gray scale: 256D
I Haar (6 types, 2 scales, 4x4 grid): 192D
I histogram (4 levels pyramid, LxL size per level, 16 features): 480D

I kernel[i] + features[i] = best (Q: Why?)

I Multiple Kernel Learning (average more kernels for 1 result)
outperforms KCF (but very slow)

IMAR Computer Vision 13 / 30

STRUCK Experiments and Results

Benchmark

I Wu dataset, otb50

I evaluate on categories: fast motion, occlusions, scale changes, etc
I metrics

I precision = location error (% of frames whose predicted bboxes were
within a threshold of gt bbox) (20 px)

I success = overlap (% of frames whose IoU (predicted, gt bbox) >
threshold (AuC)

I Robustness
I perturb the initialization in time and space
I OnePassEval: first frame gt bbox
I TemporalRobustnessEval: other starting frame
I SpatialRobustnessEval: shifts + scales on initial bbox

IMAR Computer Vision 14 / 30

STRUCK Experiments and Results

Results

I why KCF is better?
I computational efficiency (HOG vs Haar)
I dense sampling (vs grid) - they’ve invalidated this assumption with

tests

I structured learning
I compare with a SVM with binary learner (overlap < 0.5 for negatives

and one positive)

IMAR Computer Vision 15 / 30

STRUCK Experiments and Results

Multi-kernel Results

I multi-kernel (mklHGHI) - very slow, not on CUDA, outperforms KCF

IMAR Computer Vision 16 / 30

STRUCK Experiments and Results

Qualitative Results

IMAR Computer Vision 17 / 30

STRUCK Experiments and Results

Conclusions

I fewer steps in LaRank, more scales (11)
I Conclusions

I structured output prediction
I budget maintenance
I cuda implementations
I (not anymore) state of the art
I best: large feature vectors + multi-kernel tracking

IMAR Computer Vision 18 / 30

KCF

KCF

High-Speed Tracking with Kernelized Correlation Filters, Joo F.
Henriques, Rui Caseiro, Pedro Martins, Jorge Batista (PAMI 2015)

I in the context of the discriminative classifier (target vs surrounding)

I augment dataset with translated + scaled patches (redundancies:
overlap)

I use a circulant data matrix, which is diagonal in Discrete Fourier
Transform space

I very fast: from O(D3) to O(Dlog(D))

IMAR Computer Vision 19 / 30

KCF Key observations

Circulant matrices and Fourier

I Px = [xn, x1, x2, . . . , xn−1]T

I {Pux |u = 0, n − 1} - set of all shifts

I all circulant matrices are made diagonal by the Discrete Fourier
Transform (DFT)

I X = Fdiag(x̂)FH (circular matrix eigen decomposition)

I x̂ = DFT (x) =
√
nFx , F is constant

IMAR Computer Vision 20 / 30

KCF Key observations

Cyclic shifts

P =

0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1 0

IMAR Computer Vision 21 / 30

KCF Training in DFT

Train in DFT (Linear Ridge Regression)

I classical
I J(w) =

∑
i (w

Hxi − yi)
2 + λ||w ||22

I J(w) = ||XHW − Y ||22 + λ||w ||22
I minwJ → ∂J

∂w = 0
I w = (XHX + λID)−1XHy , O(D3 + D2N) complexity

I interesting
I matrix inversion lemma:

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1

I R = IN , B = X , P = λ−1ID
I w = XH(XXH + λIN)−1y , O(N3 + N2D) complexity

I X - circulant

I w = (F ∗ diag(x̂
⊙

x̂∗)FH + λI)−1Fdiag(x̂∗)FHy

I ŵ = x̂∗
⊙

ŷ
x̂
⊙

x̂∗+λ

IMAR Computer Vision 22 / 30

KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) I

I starting from w = XH(XXH + λIN)−1y

I XXT = K

I α = (K + λIN)−1y

I w = XTα =
∑

i αixi
I f (x) = wT x =

∑
i αix

T
i x =

∑
i αik(xi , x) = (K x)Tα

I Kernelized Ridge Regression: α = (K + λI)−1y

IMAR Computer Vision 23 / 30

KCF Training in DFT

Train in DFT (Kernelized Ridge Regression) II

I α = (K + λI)−1y
I Theorem: Kernel matrix K of a circular matrix C(x) is circulant if ∀

unitary matrix M (MMT = I), k(x , x ′) = k(Mx ,Mx ′)
I k(xi , xj) = k(P ix ,P jx) = k(MP ix ,MP jx)
I M = P−i → ki,j = k(x ,P(j−i)modnx)→ K is circulant
I kxx - first row of the circular K (generating vector)

I K is circulant → α̂ = ŷ

k̂xx+λ

IMAR Computer Vision 24 / 30

KCF Detection in DFT

Detection in DFT
I Detection

I more general definition: kxx′

i = k(x ′,P i−1x) - kernel correlation
I K z = C (kxz), kxz - kernel correlation between image x and patch z;

circulant in base vectors permutations (x, z)
I f (z) = (K z)T ∗ α
I f̂ (z) = k̂xz ∗ α̂, a vector containing the output for all cyclic shifts of z

I Kernel correlation
I dot product (polynomial kernel)

I kxx′
i = k(x ′,P i−1x) = g(x ′TP i−1x)→ kxx′ = k(C(x)x ′)

I kxx′ = g(F−1(x̂∗
⊙

x̂ ′))
I RBF and Gaussian kernel

I kxx′
i = k(x ′,P i−1x) = h(||x ′T − P i−1x ||2)

I kxx′
i = k(x ′,P i−1x) = h(||x ′T ||2 + ||P i−1x ||2 − 2x ′TP i−1x)

I kxx′ = h(||x ′T ||2 + ||x ||2 − 2F−1(x̂∗
⊙

x̂ ′))
I kxx′ = exp(− 1

σ2 (||x ′T ||2 + ||x ||2 − 2F−1(x̂∗
⊙

x̂ ′)))

I Multiple Channels:
kxx

′
= exp(− 1

σ2 (||x ′T ||2 + ||x ||2 − 2F−1(
∑

c x̂
∗
c

⊙
x̂ ′c)))

IMAR Computer Vision 25 / 30

KCF Algorithm

Algorithm

I train a new model at the new position

I linearly interpolate the obtained values of α and x with the ones from
the previous frame

IMAR Computer Vision 26 / 30

KCF Experiments and Results

Results

IMAR Computer Vision 27 / 30

KCF Experiments and Results

Results by category

IMAR Computer Vision 28 / 30

KCF Experiments and Results

Qualitative Results

IMAR Computer Vision 29 / 30

KCF Experiments and Results

Other Questions?

IMAR Computer Vision 30 / 30

	Tracking by Detection
	Framework
	Subcategories

	STRUCK
	Structured output tracking
	Online optimization
	Experiments and Results

	KCF
	Key observations
	Training in DFT
	Detection in DFT
	Algorithm
	Experiments and Results

