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Introduction in Tracking

Tracking

I The root for (m)any video applications (robotics, medical-posture
apps, self-driving cars, smart houses, surveillance, describe videos in
natural language)

I Generic class tracking:
I the only GT is the bounding box of the object in the first frame
I not knowing in advance the properties of the object being tracker

(appearance model or motion patterns)

I Challenges in tracking
I integrate changes in appearance, but keep the model learned so far
I problems: background clutter, fast or complex motion, deformation, etc
I drifting: accumulating small errors (eg. bkg as positive sample)
I decide bounding box based on detection map (weight and height)
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Related work

Previous Approaches

I Discriminative Tracking
I training samples labeled by the tracker
I rely on the quality of the training set
I very similar positive samples
I bad samples (due to occlusion, clutter)
I results in drifting

I DCF - Discriminative Correlation Filter Trackers
I efficiently exploits all cyclic shifts of the training samples
I used at multi-channel level
I single-resolution feature map
I learns a set of discrete filters for target localization
I outputs discrete detection scores
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Related work

SOTA Trackers

I CCOT (Danelljan et al., 2016)
I features from multiple layers of CNN
I continuous operator transforms features from discrete to continuous

space
I multi-resolution feature maps would generate artifacts (if combining

discrete values)
I convolute operator convolves continuous features with continuous

learned filters
I optimizes computation (Fourier domain)
I train on each frame (Conjugate Gradient)

I ECO (Danelljan et al., 2017)
I starts from CCOT
I reduces the overfit by grouping similar frames (learns a Gaussian

mixture model for frames)
I speedup (factorizes the convolution operation, having fewer filters)
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Related work

SOTA Trackers
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Motivation

Intuition and Motivation

I Purpose and Approach:
I adapt the current knowledge to continuous changes
I robust against background noise
I many parts, with degrees of complexity, guided by the co-occurrences

of their responses

I 1) Stability through steadiness
I candidate-reliable-gold (vote co-occurred frequently enough at the

same location with the majority)
I keep the first (very confident) frames
I uncertainty mask over previous center location

I 2) Robust Adaptation
I continuously adapt by validate parts using a temporal buffer
I update the ConvNetPart on HCF (accumulated over time)

I 3) Robust frame to frame tracking
I final vote: peak of the voting map: sum over all parts
I strong co-occurrences of votes at a single location

PhD - 2nd year, 1st semester report - 2018 April 13, 2018 7 / 26



Architecture

Society of Tracking Parts
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Architecture

Voting maps
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I FilterParts vote is stable

I ConvNetPart has usually a better quality, but sometimes it fails

I the combination provides a more robust maximum
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Architecture Mathematical novelty

Learning FilterParts I

I Reliability states
I reliability = frequency at which the maximum activation of a given part

is in the neighborhood of the maximum in the final activation
I every U frames, measure the reliability of a given part
I promote parts with a large reliability
I from candidate state (C) to reliable state (R) and to gold (G)
I remove parts that do not pass the test (except for permanent - Gold -

ones)

I FilterParts update phase
I new parts as candidates
I classifiers, of different sizes and locations
I linear filters over activation maps of deep features
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Architecture Mathematical novelty

Learning FilterParts II
I Choose patches

I centered on a thin grid over the searching zone
I build data matrix D (with one patch per row)

I Build linear ”1 vs all” classifiers
I ci = (D>D + λIk)−1D>yi
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Architecture Mathematical novelty

Learning FilterParts III

I balance positive vs negatives: weighted linear ridge regression, in closed
form: θi = (D>WiD + λIk)−1D>Wiyi

I y>i =
[
0 0 ... 1 ... 0 0

]
I novelty: for ”1 vs all” case, the solution vector (θi ) has the same

direction with the one for the linear ridge regression (ci ), having the
ratio qi = n

1+(n−1)d>i ci
, so θi = qici

I Advantages
I ci can be computed in one operation for all ”i”s (not possible for the

weighted case)
I bonus: invert a smaller matrix (DD> instead of D>D)
I ci = D>(DD> + λIn)−1yi 1, invert a matrix with 2 orders of

magnitude smaller

I we can compute all positive and all negative classifiers with only one
(small) matrix inversion

1Matrix Inversion Lemma, see Murphy (2012), Ch. 4.3.4.2
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Architecture Mathematical novelty

Learning the ConvNetPart
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Experiments VOT Benchmark

VOT Benchmark

I VOT16, VOT17 benchmarks
I Single-object, single-camera, model-free, short-term, causal tracker
I Bounding box: Rotated rectangle
I Evaluation:

I Reinitialize tracker after each complete fail
I Robustness: number of times a tracker drifts of the target
I Accuracy: average overlap during successful tracking
I Metric for both: Expected Average Overlap (EAO)

I 70 trackers in the VOT16 benchmark
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Experiments Results

Tracker
Dataset VOT17 VOT16

EAO Fail rate Acc EAO Fail rate Acc

STP (ours) 0.309 0.765 0.44 0.361 0.47 0.48

CFWCR 0.303 1.2 0.48 0.39 0.81 0.58
ECO 0.28 1.13 0.48 0.374 0.72 0.54

CCOT 0.267 1.31 0.49 0.331 0.85 0.52

Staple 0.169 2.5 0.53 0.295 1.35 0.54

ASMS 0.169 2.23 0.494 0.212 1.925 0.503

CCCT - - - 0.223 1.83 0.442

EBT - - - 0.291 0.9 0.44

CSRDCF 0.256 1.368 0.491 - - -

MCPF 0.248 1.548 0.510 - - -

ANT 0.168 2.16 0.464 - - -

I best failure rate by large margins (42%-67%), low overlap

Trackers: He et al. (2017); Danelljan et al. (2017, 2016); Bertinetto et al. (2016);
Vojir et al. (2014); Chen et al. (2013); Zhu et al. (2016); Lukezic et al. (2017); Zhang
et al. (2017); Cehovin et al. (2016)PhD - 2nd year, 1st semester report - 2018 April 13, 2018 15 / 26



Experiments Results

Ablation study - Pathways

Version
Dataset VOT17 VOT16

EAO Fail rate Acc EAO Fail rate Acc

FilterParts only 0.25 0.99 0.42 0.306 0.80 0.44

ConvNetPart only 0.205 2.09 0.43 0.265 1.53 0.46

Combined 0.309 0.765 0.44 0.361 0.47 0.48

I ”ConvNetPart only”: use the FilterParts pathway only for the first 20
frames, to initialize the network

I ”ConvNetPart only”: the ConvNetPart is trained on each frame,
using its own predictions as ground-truth

I ConvNetPart is not stable (high failure rate)
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Experiments Results

Ablation study - ConvNetPath update
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Version
Dataset VOT17 VOT16

EAO Fail rate Acc EAO Fail rate Acc

No update 0.28 0.95 0.43 0.34 0.7 0.48
Full update 0.284 0.92 0.44 0.327 0.66 0.46

HCFs update 0.309 0.765 0.44 0.361 0.47 0.48

I 11% of frames are HCFs
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Experiments Results

Ablation study - Part roles

Version
Dataset VOT17 VOT16

EAO Fail rate Acc EAO Fail rate Acc

One role 0.262 0.99 0.44 0.31 0.715 0.47

All roles 0.309 0.765 0.44 0.361 0.47 0.48

I roles are assigned using spatial and temporal co-occurrences

I roles for FilterParts: candidate, reliable, gold

PhD - 2nd year, 1st semester report - 2018 April 13, 2018 18 / 26



Conclusions and Future Work

Conclusions and Future work

I Conclusion
I 2 deep pathways, co-occurrences constraints in order to keep each path

robustness high over time
I FilterNetPart

I less flexible, more robust
I different roles, depending on their degree of reliability

I ConvNetPart
I less robust but more capable of adapting to complex changes in object

appearance
I trained only on HCF

I state of the art results for VOT17 (by large margin for failure rate)

I Future work
I segmentation for tracker shape
I speedup for filter parts
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Conclusions and Future Work

Thank you!
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