Saddle Points

Elena Burceanu
eburceanu@bitdefender.com

Introduction

Cost function - Theoretical landscape

Cost function - Practical landscape

Behavior of the Optimization algorithms

Saddle Free Algorithm (new)

Results

Dauphin and Pascanu

- Identifying and attacking the saddle point problem in high-dimensional non-convex optimization - Pascanu et al.
[2014] and Dauphin et al. [2014]
- prior work about the geometry of the error function
- optimization algorithms behavior (near saddle points)
- new algorithm (Saddle Free)
- practical implementation of
- SGD (ok, but slow)
- Newton (doesn't escape from SPs)
- Natural Gradient (might not escape)
- Saddle-Free Newton (new solution)

Definitions

- Stationary (critical) point
- $\forall i, \frac{\partial F}{\partial \theta_{i}}\left(\theta_{0}\right)=0$
- Point of inflexion
- $F^{\prime \prime}\left(\theta_{0}\right)=0$ (defined only in 1D)
- Minima (maxima)
- stationary point

- Hessian matrix analysis
- min: $\forall i, \lambda_{i} \geq 0\left(\max : \forall i, \lambda_{i} \leq 0\right)$
- Saddle point
- stationary point
- not a local minima/maxima
- analyze Hessian matrix in θ_{0}
- $\exists i, j(i \neq j)$ s.t. $\lambda_{i}>0$ and $\lambda_{j}<0$
- degenerates (monkey SP) $\exists i, \lambda_{i}=0$

Generic cost landscapes

- Bray and Dean [2007], Fyodorov and Williams [2007]
- statistical physics
- Gaussian random matrix
- replica theory
- w-stationary points, ϵ - Error $\left(w_{0}\right)$
- $\alpha-\%$ negative eigenvalues of the Hessian $\left(w_{0}\right)$
- monotonically increasing curve: "the larger the error, the larger the index"
- if w_{i} is a local minima, then $\alpha_{i}=0$, so ϵ_{i} is close to global minima
- if ϵ_{i} is large, then $\alpha_{i}>0$, so w_{i} is a saddle point
- Wigners famous semicircular law
- spectrum is shifting right

Generic cost landscapes

- Bray and Dean [2007], Fyodorov and Williams [2007]
- statistical physics
- Gaussian random matrix
- replica theory
- w-stationary points, ϵ - Error $\left(w_{0}\right)$
- $\alpha-\%$ negative eigenvalues of the Hessian $\left(w_{0}\right)$
- monotonically increasing curve: "the larger the error, the larger the index"
- if w_{i} is a local minima, then $\alpha_{i}=0$, so ϵ_{i} is close to global minima
- if ϵ_{i} is large, then $\alpha_{i}>0$, so w_{i} is a saddle point
- Wigners famous semicircular law
- spectrum is shifting right
- random matrix theory
- $P\left(\lambda_{i}>0\right)=\frac{1}{2}$
- $P\left(\lambda_{i}>0\right)=\left(\frac{1}{2}\right)^{N_{\lambda}}, \forall i\left(1 . . N_{\lambda}\right)$, discussion over N_{λ}

Cost function - Practical landscape

- downsample input, compute J, H, eigenvalues
- Baldi and Hornik [1989]
- 1 layer MLP, linear
- error surface shows only saddle-points and no local minima
- Saxe et al. [2014]
- linear MLP
- SP arise due to scaling symmetries in the weight space (Jacobians isometry)
- orthogonal weight initialization \rightarrow training time DOESN'T depend on MLP depth
- linear nets have many saddle points
- Mizutani and Dreyfus [2010]
- 1 layer MLP
- error surface has saddle points (where the Hessian matrix is indefinite)

Symmetries in error landscapes

- Rattray et al. [1998], Inoue et al. [2003]
- symmetries in error function: $\mathrm{F}\left(\theta^{(1)}\right)=\mathrm{F}\left(\theta^{(2)}\right)$
- going from $\theta^{(1)}$ to $\theta^{(2)}$ should pass over a saddle point (frequent) or a local minima/maxima (very rare)

Quick review of GD and Newton optimization

- f is 2-differentiable, convex on a convex subset \leftrightarrow Hessian is positive semidefinite on that subset
- Taylor: $f\left(\theta_{0}+p\right) \approx f\left(\theta_{0}\right)+p^{T} \nabla_{\theta} f\left(\theta_{0}\right)+\frac{p^{T} H_{f}\left(\theta_{0}\right) p}{2}$
- find p that minimize f (near θ_{0})
- Gradient Descent
- fix step size $\left(\|p\|_{2}=1\right)$
- $f\left(\theta_{0}+\alpha p\right)=$ const $+\alpha p^{T} \nabla_{\theta} f\left(\theta_{0}\right), \alpha$ is small
- $\mathbf{Q}: \mathbf{p}=$?

Quick review of GD and Newton optimization

- f is 2-differentiable, convex on a convex subset \leftrightarrow Hessian is positive semidefinite on that subset
- Taylor: $f\left(\theta_{0}+p\right) \approx f\left(\theta_{0}\right)+p^{T} \nabla_{\theta} f\left(\theta_{0}\right)+\frac{p^{\top} H_{f}\left(\theta_{0}\right) p}{2}$
- find p that minimize f (near θ_{0})
- Gradient Descent
- fix step size $\left(\|p\|_{2}=1\right)$
- $f\left(\theta_{0}+\alpha p\right)=$ const $+\alpha p^{T} \nabla_{\theta} f\left(\theta_{0}\right), \alpha$ is small
- $\mathbf{Q}: \mathbf{p}=$?
- minimize $_{p}: p^{T} \nabla_{\theta} f\left(\theta_{0}\right)=\left\|p^{T}\right\|_{2} *\left\|\nabla_{\theta} f\left(\theta_{0}\right)\right\|_{2} * \cos (\beta)$
- solution: $\cos (\beta)=-1, p=-\frac{\nabla_{\theta} f\left(\theta_{0}\right)}{\left\|\nabla_{\theta} f\left(\theta_{0}\right)\right\|_{2}}$, iterate
- Newton
- second order Taylor approximation
- $\mathrm{Q}: \mathrm{p}=$?

Quick review of GD and Newton optimization

- f is 2-differentiable, convex on a convex subset \leftrightarrow Hessian is positive semidefinite on that subset
- Taylor: $f\left(\theta_{0}+p\right) \approx f\left(\theta_{0}\right)+p^{T} \nabla_{\theta} f\left(\theta_{0}\right)+\frac{p^{\top} H_{f}\left(\theta_{0}\right) p}{2}$
- find p that minimize f (near θ_{0})
- Gradient Descent
- fix step size $\left(\|p\|_{2}=1\right)$
- $f\left(\theta_{0}+\alpha p\right)=$ const $+\alpha p^{T} \nabla_{\theta} f\left(\theta_{0}\right), \alpha$ is small
- $\mathbf{Q}: \mathbf{p}=$?
- minimize $_{p}: p^{T} \nabla_{\theta} f\left(\theta_{0}\right)=\left\|p^{T}\right\|_{2} *\left\|\nabla_{\theta} f\left(\theta_{0}\right)\right\|_{2} * \cos (\beta)$
- solution: $\cos (\beta)=-1, p=-\frac{\nabla_{\theta} f\left(\theta_{0}\right)}{\left\|\nabla_{\theta} f\left(\theta_{0}\right)\right\|_{2}}$, iterate
- Newton
- second order Taylor approximation
- $\mathbf{Q}: \mathbf{p}=$?
- condition: $\frac{\partial f\left(\theta_{0}+p\right)}{\partial p}=0$
- solve: $\nabla_{\theta} f\left(\theta_{0}\right)^{T}+\frac{p^{T}\left(H_{f}\left(\theta_{0}\right)+H_{f}\left(\theta_{0}\right)^{T}\right)}{2}=0$
- solution: $p=-H_{f}\left(\theta_{0}\right)^{-1} * \nabla_{\theta} f\left(\theta_{0}\right)$
- find more in Nocedal and Wright [2006a]

Optimization near Saddle Points

- SP are very frequent
- how optimization algorithms behave near them?
- θ^{*} is a critical point: $\forall i, \frac{\partial f(\theta)}{\partial \theta_{i}}\left(\theta^{*}\right)=0$
- Taylor second order approximation near θ^{*} - SP
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{\Delta \theta^{\top} H_{f}\left(\theta^{*}\right) \Delta \theta}{2}$
- $H=H^{T}=V D V^{T}, V=\left[v_{1}\left|v_{2}\right| \ldots\right]$ Q: Why?

Optimization near Saddle Points

- SP are very frequent
- how optimization algorithms behave near them?
- θ^{*} is a critical point: $\forall i, \frac{\partial f(\theta)}{\partial \theta_{i}}\left(\theta^{*}\right)=0$
- Taylor second order approximation near θ^{*} - SP
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{\Delta \theta^{\top} H_{f}\left(\theta^{*}\right) \Delta \theta}{2}$
- $H=H^{T}=V D V^{T}, V=\left[v_{1}\left|v_{2}\right| \ldots\right]$ Q: Why?
- Spectral theorem
- $H=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}, H^{-1}=\sum_{i=1}^{n} \lambda_{i}^{-1} v_{i} v_{i}^{T}$

Optimization near Saddle Points

- SP are very frequent
- how optimization algorithms behave near them?
- θ^{*} is a critical point: $\forall i, \frac{\partial f(\theta)}{\partial \theta_{i}}\left(\theta^{*}\right)=0$
- Taylor second order approximation near θ^{*} - SP
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{\Delta \theta^{\top} H_{f}\left(\theta^{*}\right) \Delta \theta}{2}$
- $H=H^{T}=V D V^{T}, V=\left[v_{1}\left|v_{2}\right| \ldots\right]$ Q: Why?
- Spectral theorem
- $H=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}, H^{-1}=\sum_{i=1}^{n} \lambda_{i}^{-1} v_{i} v_{i}^{T}$
- $\Delta \theta^{\top} H \Delta \theta=\Delta \theta^{\top}\left(\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}\right) \Delta \theta=\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right)^{2}$
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} * \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right)^{2}$
- optimization algorithms: find next $\Delta \theta$
- how good minimizer are $\Delta \theta$ for f ?

A. Gradient Descent near Saddle Points

- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right)^{2}$
- stepSGD $=-\nabla_{\theta} f\left(\theta^{*}+\Delta \theta\right)=-\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right) v_{i}^{\top}$
- $\operatorname{stepSGD}{v_{i}}=-\lambda_{i}\left(v_{i}^{T} \Delta \theta\right)$
- $\Delta \theta=\sum_{j=1}^{n} \epsilon_{j} v_{j}$ (Q: Why do $v_{j} s$ form a basis?)

A. Gradient Descent near Saddle Points

- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} \Delta \theta\right)^{2}$
- stepSGD $=-\nabla_{\theta} f\left(\theta^{*}+\Delta \theta\right)=-\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right) v_{i}^{\top}$
- $\operatorname{step} S G D_{v_{i}}=-\lambda_{i}\left(v_{i}^{T} \Delta \theta\right)$
- $\Delta \theta=\sum_{j=1}^{n} \epsilon_{j} v_{j}$ (Q:Why do $v_{j} s$ form a basis?)
- $v_{i}^{T} \Delta \theta=v_{i}^{T} \sum_{j} \epsilon_{j} v_{j}=\epsilon_{i} \rightarrow \operatorname{stepSGD}{v_{i}}=-\lambda_{i} \epsilon_{i}$
- update rule: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}\left(1-\alpha \lambda_{i}\right) \epsilon_{i} * v_{i}$
- Q: Analysis over $\lambda_{i}<0, \lambda_{j}>0$

A. Gradient Descent near Saddle Points

- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} \Delta \theta\right)^{2}$
- stepSGD $=-\nabla_{\theta} f\left(\theta^{*}+\Delta \theta\right)=-\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right) v_{i}^{\top}$
- $\operatorname{stepSGD}{v_{i}}=-\lambda_{i}\left(v_{i}^{T} \Delta \theta\right)$
- $\Delta \theta=\sum_{j=1}^{n} \epsilon_{j} v_{j}$ (Q: Why do $v_{j} s$ form a basis?)
- $v_{i}^{T} \Delta \theta=v_{i}^{T} \sum_{j} \epsilon_{j} v_{j}=\epsilon_{i} \rightarrow \operatorname{stepSGD}{v_{i}}=-\lambda_{i} \epsilon_{i}$
- update rule: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}\left(1-\alpha \lambda_{i}\right) \epsilon_{i} * v_{i}$
- Q: Analysis over $\lambda_{i}<0, \lambda_{j}>0$
- moves away from θ^{*}, in v_{i} (negative curvature) direction
- moves towards θ^{*}, in v_{j} (positive curvature) direction
- BUT proportionally with λ_{i} value
- for a large discrepancy between eigenvalues, GD can be very slow
- GD (slowly) escapes SP

B. Newton near Saddle Points

- Newton assumption: Hessian is positive definite
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right)^{2}$
- stepNewton $=-H_{f}^{-1} * \nabla_{\theta} f$
- $-\left(\sum_{i=1}^{n} \lambda_{i}^{-1} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} \Delta \theta\right) v_{i}^{T}\right)^{T}=-\sum_{i=1}^{n}\left(v_{i}^{T} \Delta \theta\right) v_{i}$
- stepNewton $v_{v_{i}}=-v_{i}^{T} \Delta \theta=-\epsilon_{i}$
- update rule: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}(1-1) \epsilon_{i} * v_{i}$
- Q: Is it bad, is it good?

B. Newton near Saddle Points

- Newton assumption: Hessian is positive definite
- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} \Delta \theta\right)^{2}$
- stepNewton $=-H_{f}^{-1} * \nabla_{\theta} f$
- $-\left(\sum_{i=1}^{n} \lambda_{i}^{-1} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{T} \Delta \theta\right) v_{i}^{T}\right)^{T}=-\sum_{i=1}^{n}\left(v_{i}^{T} \Delta \theta\right) v_{i}$
- stepNewton $v_{v_{i}}=-v_{i}^{T} \Delta \theta=-\epsilon_{i}$
- update rule: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}(1-1) \epsilon_{i} * v_{i}$
- Q: Is it bad, is it good?
- losses info about $\operatorname{sign}\left(\lambda_{i}\right)$, SPs on any direction
- Newton DOESN'T escape SP; it is a SP attractor

C. Hessian approximation

- practical implementation of $2^{\text {nd }}$ order methods for non-convex optimization (trust region)
- non-convex; Hessian has negative curvature $\left(\lambda_{i}<0\right)$
- currently, we ignore the negative curvature (we suppose that the problem is convex)
- damping the Hessian (to remove the negative curvature) $H=V D_{\text {damped }} V^{T} ; D_{\text {damped }}=D+m * \mathbb{\square}, H \leftarrow H+m * \mathbb{\square}$
- m min (we want small change in H) s.t. $\lambda_{\text {min }}+m>0$
- step $T R=-H_{\text {damped }}^{-1} * \nabla_{\theta} f$
- step $T R_{v_{i}}=-\frac{\lambda_{i}}{\lambda_{i}+m} v_{i}^{T} \Delta \theta=-\frac{\lambda_{i}}{\lambda_{i}+m} \epsilon_{i}$
- Q: Is it all fixed? Discuss this result.

C. Hessian approximation

- practical implementation of $2^{\text {nd }}$ order methods for non-convex optimization (trust region)
- non-convex; Hessian has negative curvature ($\lambda_{i}<0$)
- currently, we ignore the negative curvature (we suppose that the problem is convex)
- damping the Hessian (to remove the negative curvature) $H=V D_{\text {damped }} V^{T} ; D_{\text {damped }}=D+m * \mathbb{\square}, H \leftarrow H+m * \mathbb{\square}$
- m min (we want small change in H) s.t. $\lambda_{\text {min }}+m>0$
- step $T R=-H_{\text {damped }}^{-1} * \nabla_{\theta} f$
- step $T R_{v_{i}}=-\frac{\lambda_{i}}{\lambda_{i}+m} v_{i}^{T} \Delta \theta=-\frac{\lambda_{i}}{\lambda_{i}+m} \epsilon_{i}$
- Q: Is it all fixed? Discuss this result.
- same problem as GD, for a large discrepancy between eigenvalues, adding a fix m to each λ_{i} might reduce $\frac{\lambda_{i}}{\lambda_{i}+m}$ very close to 0 (for some i); slow

D: Natural Gradient near Saddle Points (opt)

- Q: Linear search vs Trust Region?

D: Natural Gradient near Saddle Points (opt)

- Q: Linear search vs Trust Region?
- Trust region: $\operatorname{argmin}_{\Delta \theta} f(\theta+\Delta \theta)$, s.t. $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)<\epsilon$
- $2^{\text {nd }}$ order Taylor approximation: $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)=\frac{1}{2} \Delta \theta^{T} F \Delta \theta$ (Berkeley CS 287: Advanced Robotics)
- Fisher matrix is a first order approximation for the Hessian and it is positive definite $F=-E[H]$ (see Appendix)
- stepNG $=-F^{-1} * \nabla_{\theta} f$
- Q: Where does this formula came from?
- Q: Linear search vs Trust Region?
- Trust region: $\operatorname{argmin}_{\Delta \theta} f(\theta+\Delta \theta)$, s.t. $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)<\epsilon$
- $2^{\text {nd }}$ order Taylor approximation: $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)=\frac{1}{2} \Delta \theta^{T} F \Delta \theta$ (Berkeley CS 287: Advanced Robotics)
- Fisher matrix is a first order approximation for the Hessian and it is positive definite $F=-E[H]$ (see Appendix)
- stepNG $=-F^{-1} * \nabla_{\theta} f$
- Q: Where does this formula came from?
- near SP, $H\left(\theta^{*}\right)-E\left[H\left(\theta^{*}\right)\right]$ might be too big
- other reasons: Mizutani and Dreyfus [2010] (related to the singularity of F)
- Natural Gradient might NOT escape SP

E: Saddle free algorithm

- Trust Region approach
- $\arg \min _{\Delta \theta}$ TaylorAprox $_{k} f(\theta+\Delta \theta)$ for a value of $k=1,2$
- s. t. $d(\theta, \theta+\Delta \theta) \leq \Delta$
- Saddle free algorithm (intuition)
- simple idea, based on previous observations:
- step should depend on $\operatorname{sign}\left(\lambda_{i}\right)$
- step should NOT depend on $\left|\lambda_{i}\right|$
- Q: How should the step (and H) look like?

E: Saddle free algorithm

- Trust Region approach
- $\arg \min _{\Delta \theta}$ TaylorAprox $_{k} f(\theta+\Delta \theta)$ for a value of $k=1,2$
- s. t. $d(\theta, \theta+\Delta \theta) \leq \Delta$
- Saddle free algorithm (intuition)
- simple idea, based on previous observations:
- step should depend on $\operatorname{sign}\left(\lambda_{i}\right)$
- step should NOT depend on $\left|\lambda_{i}\right|$
- Q: How should the step (and H) look like?
- step rescaled with $\frac{1}{\left|\lambda_{i}\right|}$
- new Hessian: $|H|=V|D| V^{T} ; H^{-1}=V|D|^{-1} V^{T}$
- $|D|$ has absolute values of eigenvalues instead of simple eigenvalues
- idea was mentioned, without proof: Nocedal and Wright [2006b] or in Murray [2010]
- Saddle free algorithm (formal)
- $\Delta \theta_{\text {SFA }}=\arg \min _{\Delta \theta} f(\theta)+\Delta \theta^{T} \nabla_{\theta} f(\theta)$
- how far from θ can we trust the first order approx?
- $d(\theta, \theta+\Delta \theta)=\mid$ TaylorAprox $_{2}$ - TaylorAprox \mid
- $d(\theta, \theta+\Delta \theta)=\frac{1}{2}\left|\Delta \theta^{T} H \Delta \theta\right| \leq \frac{1}{2} \Delta \theta^{T}|H| \Delta \theta \leq \Delta$
- Lagrange multipliers: stepSF $=-|H|^{-1} * \nabla_{\theta} f$

Recap

- $f\left(\theta^{*}+\Delta \theta\right)=f\left(\theta^{*}\right)+\frac{1}{2} * \sum_{i=1}^{n} \lambda_{i}\left(v_{i}^{\top} \Delta \theta\right)^{2}$
- $\Delta \theta=\sum_{i=1}^{n} \epsilon_{i} v_{i}$
- $v_{i}^{T} \Delta \theta=\epsilon_{i}$
- $\theta_{\text {new }} \leftarrow \theta_{\text {old }}-\alpha *$ step
- SGD: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}\left(1-\alpha \lambda_{i}\right) \epsilon_{i} * v_{i}$
- Newton: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}(1-1) \epsilon_{i} * v_{i}$
- damped Hessian: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}\left(1-\frac{\lambda_{i}}{\lambda_{i}+m}\right) \epsilon_{i} * v_{i}$
- Saddle Free: $\theta_{\text {new }} \leftarrow \theta^{*}+\sum_{i=1}^{n}\left(1-\frac{\lambda_{i}}{\left|\lambda_{i}\right|}\right) \epsilon_{i} * v_{i}$
- Wanted behavior
- $\lambda_{i}>0$, want to go closer to the SP (is the minimum on this subspace)
- $\lambda_{i}<0$, want to go further from the SP (is maximum on this subspace)

Experiments

- Practical implementation problems
- hard to compute Hessian ($\mathrm{n} \times \mathrm{n}$, too large for many parameters)
- hard to inverse Hessian
- Q: How would you implement it?

Experiments

- Practical implementation problems
- hard to compute Hessian ($\mathrm{n} \times \mathrm{n}$, too large for many parameters)
- hard to inverse Hessian
- Q: How would you implement it?
- see Appendix 2.
- Results
- MNIST and CIFAR-10, 10×10 downsampled
- 7 layers deep MLP; RNN on Penn Treebank
- optimization: SGD first, continue with SFA
- eigenvalues distribution shifts right
- SFA vs other algo: better for more parameters

Statistically relevant experiments

- critical points distribution in the $\epsilon-\alpha$ plane
- how the eigenvalues of the Hessian at these critical points are distributed
- MNIST downsampled
- along optimization path, find nearby critical points
- (Newton's method: $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
- 20 runs of SFA (random seed)
- 100 jobs - find critical points around parameters from random epochs (of 20 random SFA runs)
- 100 jobs - find critical points with random sampling ($-1,1$)
- CIFAR downsampled
- 3 layer NN, SGD, tanh, 10-300 epochs, random init \rightarrow save all params
- Newton's method
- results (confirms Bray and Dean [2007]):
- eigenvalues distribution shift to the left as the error increases
- critical points concentrate along a monotonically increasing curve in the $\epsilon-\alpha$ plane

- Q: Something interesting?

Conclusion

- Theoretical existence of Saddle Points (others)
- Practical existence of Saddle Points
- (statistically) relevant experiments
- Optimization algorithms: behavior near SP
- New algorithm (Saddle Free algorithm)
- demonstration
- practical implementation, difficulties, framework
- Future work
- better H estimation algorithms
- find new theoretical properties of SP in NN context, understand statistical property of high dimensional surfaces
- "Saddle-free Hessian-free Optimization", Martin Arjovsky NYU, workshop NIPS 2016

Other Questions?

Video about the subject (introduction): Bengio [2015]

Appendix 1A: Fisher Matrix

- the amount of info that X (observable random variable) carries about θ (unknown parameter)
- $f(X \mid \theta)=f_{\theta}(X)$ probability for X, likelihood for θ
- score $=\frac{\partial \log f_{\theta}(X)}{\partial \theta}$
- $E_{f_{\theta}(X)}[$ score $]=0$ (first moment)
- $=E_{f_{\theta}(X)}\left[\frac{\partial \log f_{\theta}(X)}{\partial \theta}\right]=E_{f_{\theta}(X)}\left[\frac{\partial \log f_{\theta}(X)}{\partial f_{\theta}(X)} \frac{\partial f_{\theta}(X)}{\partial \theta}\right]=$
$E_{f_{\theta}(X)}\left[\frac{1}{f_{\theta}(X)} \frac{\partial f_{\theta}(X)}{\partial \theta}\right]=\int \frac{1}{f_{\theta}(X)} \frac{\partial f_{\theta}(X)}{\partial \theta} f_{\theta}(X) d x=\int \frac{\partial f_{\theta}(X)}{\partial \theta} d x=$ $\frac{\partial}{\partial \theta} \int f_{\theta}(X) d x=\frac{\partial 1}{\partial \theta}=0$
- $E_{f_{\theta}(X)}\left[s c o r e^{2}\right]$ (second moment $=$ Fisher info)
- $H=\frac{\partial^{2} \log f_{\theta}(X)}{\partial \theta^{2}}=\frac{\partial}{\partial \theta} \frac{\partial \log f_{\theta}(X)}{\partial \theta}=\frac{\partial}{\partial \theta} \frac{\partial f_{\theta}(X)}{f_{\theta}(X)}=\frac{g^{\prime} * h-h^{\prime} * g}{h^{2}}=$ $\frac{\frac{\partial^{2} f_{\theta}(X)}{\partial \theta^{2}}}{f_{\theta}(X)}-\left(\frac{\frac{\partial f_{\theta}(X)}{\partial \theta^{2}}}{f_{\theta}}\right)^{2}=\frac{\left.\frac{\partial^{2} f_{\theta}(X)}{\partial_{\theta}(}\right)}{f_{\theta}(X)}-\left(\frac{\partial \log f_{\theta}(X)}{\partial \theta}\right)^{2}$
- $\int \frac{\frac{\partial^{2} f_{\theta}(X)}{\theta_{\theta}}}{f_{\theta}(X)} f_{\theta}(X) d x=0$
- $E[H]=-\int\left(\frac{\partial \log f_{\theta}(X)}{\partial \theta}\right)^{2} f_{\theta}(X) d x=-$ FisherMatrix

Appendix 1B: Natural Gradient Learning in MLP

- Amari [1998]
- $q(x)=$ real distribution; $p_{\theta}(x)=$ estimate; find θ which approximates it best
- Loss $=-E_{q}\left[\log p_{\theta}(x)\right]=E_{q}\left[\log \frac{q(x)}{q(x)}-\log p_{\theta}(x)\right]=$ $E_{q}\left[\log \frac{q(x)}{p_{\theta}(x)}\right]-E_{q}[\log q(x)]=E\left[\log \frac{q(x)}{p_{\theta}(x)}\right]+$ entropy $_{q}$
- $\operatorname{Loss}(\theta)=K L\left(q \| p_{\theta}\right)+$ const.
- $2^{\text {nd }}$ order Taylor approx: $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)=\frac{1}{2} \Delta \theta^{T} F \Delta \theta$ (Berkeley CS 287: Advanced Robotics)
- Q: Why is the Fisher matrix important? Demonstrate that $\lambda_{i}>0, \forall i$
- Amari [1998]
- $q(x)=$ real distribution; $p_{\theta}(x)=$ estimate; find θ which approximates it best
- Loss $=-E_{q}\left[\log p_{\theta}(x)\right]=E_{q}\left[\log \frac{q(x)}{q(x)}-\log p_{\theta}(x)\right]=$ $E_{q}\left[\log \frac{q(x)}{p_{\theta}(x)}\right]-E_{q}[\log q(x)]=E\left[\log \frac{q(x)}{p_{\theta}(x)}\right]+$ entropy $_{q}$
- $\operatorname{Loss}(\theta)=K L\left(q \| p_{\theta}\right)+$ const.
- $2^{\text {nd }}$ order Taylor approx: $K L\left(p_{\theta} \| p_{\theta+\Delta \theta}\right)=\frac{1}{2} \Delta \theta^{T} F \Delta \theta$ (Berkeley CS 287: Advanced Robotics)
- Q: Why is the Fisher matrix important? Demonstrate that $\lambda_{i}>0, \forall i$
- $\left.x^{T} * F * x=E\left[X^{T} * S * S^{T} * X\right)\right]=E\left[\left(X^{T} * S\right)^{2}\right] \geq 0$

Appendix 2A: Power Iteration (PageRank)

- given A , the algo finds the biggest λ_{i} and its eigenvector
- $\frac{A^{k} x}{\left\|A^{k} x\right\|_{2}} \rightarrow_{k} v_{1}^{*}$ (principal eigenvector)
- $A=V J V^{-1} \Rightarrow A^{k}=V J^{k} V^{-1}$ (Jordan decomposition)
- $x=\sum_{i=1}^{n} c_{i} v_{i}$, random vector $\times\left(v_{i}\right.$ form a base)
- $A^{k} x=V J^{k} V^{-1}\left(\sum_{i=1}^{n} c_{i} v_{i}\right)=$

$$
V J^{k} V^{-1} c_{1} v_{1}+V J^{k} V^{-1}\left(\sum_{i=2}^{n} c_{i} v_{i}\right)
$$

- $A^{k} x=\lambda_{1}^{k} c_{1} v_{1}+\lambda_{1}^{k} V\left(\frac{J}{\lambda_{1}}\right)^{k}\left(\sum_{i=2}^{n} c_{i} e_{i}\right)$
- $\left(\frac{J}{\lambda_{1}}\right)^{k}=k \rightarrow \infty\left[\begin{array}{cccc}1 & 0 & 0 & \ldots \\ 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & \ldots \\ \ldots & \ldots & \ldots & \ldots\end{array}\right] \Rightarrow\left(\frac{J}{\lambda_{1}}\right)^{k} e_{i}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \ldots\end{array}\right], i \geq 2$
- convergence rate: $\left(\frac{J}{\lambda_{1}}\right)^{k}$ converges geometrical with $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$ rate
- $\left\|A^{k} x\right\|_{2}=\lambda_{1}^{k} c_{1}, \frac{A^{k} x}{\left\|A^{k} x\right\|_{2}} \rightarrow v_{1}^{*}$ (iterative, no decomposition)

Appendix 2B: Lanczos algorithm

- in Power Iteration (PI), $x, A x, A^{2} x, \ldots$ become linear dependent
- PI is numeric instable
- orthogonalized base for faster convergence
- Krylov subspace $x, A x, A^{2} x, \ldots$
- PI throws away previous computation
- make the base orthogonal $u_{i}=v_{i}-\sum_{k=1}^{i} \operatorname{proj}_{u_{k}} v_{i}$ (Gram Schmidt)
- normalize the base $\frac{u_{i}}{\left\|u_{i}\right\|_{2}}$
- Lanczos algo
- compute new vector: $\left(w_{i}=H v_{i}\right)$
- apply Gram Schmidt for w_{i} to make the basis orthogonal
- normalize $v_{i+1}=\frac{w_{i}}{\left\|w_{i}\right\|_{2}}$
- easy to compute the inverse of a matrix, having the Krylov space (linear combination of its powers)

References I

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998. URL http://www.maths.tcd.ie/~mnl/store/Amari1998a.pdf.
P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2(1):53-58, 1989. doi:
10.1016/0893-6080(89)90014-2. URL http://dx.doi.org/10.1016/0893-6080(89) 90014-2.
Y. Bengio. Deep learning: Theoretical motivations, 2015. URL http://videolectures.net/deeplearning2015_bengio_ theoretical_motivations/.
c. a. N. G. Berkeley CS 287: Advanced Robotics. Berkeley - cs 287: Advanced robotics, course about natural gradient. URL https://people.eecs.berkeley.edu/~pabbeel/ cs287-fa09/lecture-notes/lecture20-6pp.pdf.

References II

A. J. Bray and D. S. Dean. Statistics of critical points of gaussian fields on large-dimensional spaces. Physics Review Letter, 2007. URL https://arxiv.org/abs/cond-mat/0611023.
Y. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. CoRR, abs/1406.2572, 2014. URL http://arxiv.org/abs/1406.2572.
Y. V. Fyodorov and I. Williams. Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. Journal of Statistical Physics, 2007. URL https://arxiv.org/abs/cond-mat/0702601.

References III

M. Inoue, H. Park, and M. Okada. On-line learning theory of soft committee machines with correlated hidden units steepest gradient descent and natural gradient descent. Journal of the Physical Society of Japan, 72(4):805-810, 2003. doi: 10.1143/JPSJ.72.805. URL http://dx.doi.org/10.1143/JPSJ.72.805.
E. Mizutani and S. Dreyfus. An analysis on negative curvature induced by singularity in multi-layer neural-network learning. In Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada., pages 1669-1677, 2010. URL http://papers.nips.cc/paper/ 4046-an-analysis-on-negative-curvature-induced-by-singul
W. Murray. Newton-type methods, 2010.

References IV

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006a.
J. Nocedal and S. J. Wright. Numerical Optimization. 2006b.
R. Pascanu, Y. N. Dauphin, S. Ganguli, and Y. Bengio. On the saddle point problem for non-convex optimization. CoRR, abs/1405.4604, 2014. URL http://arxiv.org/abs/1405.4604. Explain better.
M. Rattray, D. Saad, and S.-i. Amari. Natural gradient descent for on-line learning. Phys. Rev. Lett., 81:5461-5464, Dec 1998. doi: 10.1103/PhysRevLett.81.5461. URL http://link.aps.org/doi/10.1103/PhysRevLett.81.5461.
A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. CoRR, abs/1312.6120, 2014. URL http://arxiv.org/abs/1312.6120.

