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Dauphin and Pascanu

I Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization - Pascanu et al.
[2014] and Dauphin et al. [2014]

I prior work about the geometry of the error function

I optimization algorithms behavior (near saddle points)

I new algorithm (Saddle Free)
I practical implementation of

I SGD (ok, but slow)
I Newton (doesn’t escape from SPs)
I Natural Gradient (might not escape)
I Saddle-Free Newton (new solution)
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Definitions

I Stationary (critical) point
I ∀i , ∂F∂θi (θ0) = 0

I Point of inflexion
I F”(θ0) = 0 (defined only in 1D)

I Minima (maxima)
I stationary point
I Hessian matrix analysis
I min: ∀i , λi ≥ 0 (max: ∀i , λi ≤ 0)

I Saddle point
I stationary point
I not a local minima/maxima
I analyze Hessian matrix in θ0

I ∃i , j(i 6= j) s.t. λi > 0 and λj < 0
I degenerates (monkey SP) ∃i , λi = 0
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Generic cost landscapes

I Bray and Dean [2007], Fyodorov and Williams [2007]

I statistical physics
I Gaussian random matrix

I replica theory
I w - stationary points, ε - Error(w0)
I α - % negative eigenvalues of the Hessian(w0)
I monotonically increasing curve: ”the larger the error, the

larger the index”
I if wi is a local minima, then αi = 0, so εi is close to global

minima
I if εi is large, then αi > 0, so wi is a saddle point
I Wigners famous semicircular law
I spectrum is shifting right

I random matrix theory
I P(λi > 0) = 1

2
I P(λi > 0) = ( 1

2
)Nλ ,∀i (1..Nλ), discussion over Nλ
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Cost function - Practical landscape

I downsample input, compute J, H, eigenvalues
I Baldi and Hornik [1989]

I 1 layer MLP, linear
I error surface shows only saddle-points and no local minima

I Saxe et al. [2014]
I linear MLP
I SP arise due to scaling symmetries in the weight space

(Jacobians isometry)
I orthogonal weight initialization → training time DOESN’T

depend on MLP depth
I linear nets have many saddle points

I Mizutani and Dreyfus [2010]
I 1 layer MLP
I error surface has saddle points (where the Hessian matrix is

indefinite)
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Symmetries in error landscapes

I Rattray et al. [1998], Inoue et al. [2003]
I symmetries in error function: F(θ(1)) = F(θ(2))
I going from θ(1) to θ(2) should pass over a saddle point

(frequent) or a local minima/maxima (very rare)
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Quick review of GD and Newton optimization
I f is 2-differentiable, convex on a convex subset ↔ Hessian is

positive semidefinite on that subset

I Taylor: f (θ0 + p) ≈ f (θ0) + pT∇θf (θ0) + pTHf (θ0)p
2

I find p that minimize f (near θ0)
I Gradient Descent

I fix step size (||p||2 = 1)
I f (θ0 + αp) = const + αpT∇θf (θ0), α is small
I Q: p = ?

I minimizep : pT∇θf (θ0) = ||pT ||2 ∗ ||∇θf (θ0)||2 ∗ cos(β)
I solution: cos(β) = −1, p = − ∇θf (θ0)

||∇θf (θ0)||2 , iterate

I Newton
I second order Taylor approximation
I Q: p = ?
I condition: ∂f (θ0+p)

∂p = 0

I solve: ∇θf (θ0)T + pT (Hf (θ0)+Hf (θ0)T )
2 = 0

I solution: p = −Hf (θ0)−1 ∗ ∇θf (θ0)

I find more in Nocedal and Wright [2006a]
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Optimization near Saddle Points

I SP are very frequent

I how optimization algorithms behave near them?

I θ∗ is a critical point: ∀i , ∂f (θ)
∂θi

(θ∗) = 0

I Taylor second order approximation near θ∗ - SP

I f (θ∗ + ∆θ) = f (θ∗) + ∆θTHf (θ∗)∆θ
2

I H = HT = VDV T ,V = [v1|v2|...] Q: Why?

I Spectral theorem
I H =

∑n
i=1 λiviv

T
i , H−1 =

∑n
i=1 λ

−1
i viv

T
i

I ∆θTH∆θ = ∆θT (
∑n

i=1 λiviv
T
i )∆θ =

∑n
i=1 λi (v

T
i ∆θ)2

I f (θ∗ + ∆θ) = f (θ∗) + 1
2 ∗

∑n
i=1 λi (v

T
i ∆θ)2

I optimization algorithms: find next ∆θ

I how good minimizer are ∆θ for f?
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A. Gradient Descent near Saddle Points

I f (θ∗ + ∆θ) = f (θ∗) + 1
2

∑n
i=1 λi (v

T
i ∆θ)2

I stepSGD = −∇θf (θ∗ + ∆θ) = −
∑n

i=1 λi (v
T
i ∆θ)vTi

I stepSGDvi = −λi (vTi ∆θ)

I ∆θ =
∑n

j=1 εjvj (Q: Why do vjs form a basis?)

I vTi ∆θ = vTi
∑

j εjvj = εi → stepSGDvi = −λiεi
I update rule: θnew ← θ∗ +

∑n
i=1(1− αλi )εi ∗ vi

I Q: Analysis over λi < 0, λj > 0
I moves away from θ∗, in vi (negative curvature) direction
I moves towards θ∗, in vj (positive curvature) direction
I BUT proportionally with λi value
I for a large discrepancy between eigenvalues, GD can be very

slow

I GD (slowly) escapes SP
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B. Newton near Saddle Points

I Newton assumption: Hessian is positive definite

I f (θ∗ + ∆θ) = f (θ∗) + 1
2

∑n
i=1 λi (v

T
i ∆θ)2

I stepNewton = −H−1
f ∗ ∇θf

I −(
∑n

i=1 λ
−1
i viv

T
i )(

∑n
i=1 λi (v

T
i ∆θ)vTi )T = −

∑n
i=1(vTi ∆θ)vi

I stepNewtonvi = −vTi ∆θ = −εi
I update rule: θnew ← θ∗ +

∑n
i=1(1− 1)εi ∗ vi

I Q: Is it bad, is it good?

I losses info about sign(λi ), SPs on any direction

I Newton DOESN’T escape SP; it is a SP attractor
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C. Hessian approximation

I practical implementation of 2nd order methods for non-convex
optimization (trust region)

I non-convex; Hessian has negative curvature (λi < 0)

I currently, we ignore the negative curvature (we suppose that
the problem is convex)

I damping the Hessian (to remove the negative curvature)
H = VDdampedV

T ;Ddamped = D + m ∗ I,H ← H + m ∗ I
I m min (we want small change in H) s.t. λmin + m > 0

I stepTR = −H−1
damped ∗ ∇θf

I stepTRvi = − λi
λi+mvTi ∆θ = − λi

λi+mεi
I Q: Is it all fixed? Discuss this result.

I same problem as GD, for a large discrepancy between
eigenvalues, adding a fix m to each λi might reduce λi

λi+m very
close to 0 (for some i); slow
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D: Natural Gradient near Saddle Points (opt)

I Q: Linear search vs Trust Region?

I Trust region: argmin∆θ f (θ + ∆θ), s.t. KL(pθ||pθ+∆θ) < ε

I 2nd order Taylor approximation: KL(pθ||pθ+∆θ) = 1
2 ∆θTF∆θ

(Berkeley CS 287: Advanced Robotics)

I Fisher matrix is a first order approximation for the Hessian
and it is positive definite F = −E [H] (see Appendix)

I stepNG = −F−1 ∗ ∇θf
I Q: Where does this formula came from?

I near SP, H(θ∗)− E [H(θ∗)] might be too big

I other reasons: Mizutani and Dreyfus [2010] (related to the
singularity of F)

I Natural Gradient might NOT escape SP
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E: Saddle free algorithm
I Trust Region approach

I arg min∆θ TaylorAproxk f (θ + ∆θ) for a value of k = 1, 2
I s. t. d(θ, θ + ∆θ) ≤ ∆

I Saddle free algorithm (intuition)
I simple idea, based on previous observations:

I step should depend on sign(λi )
I step should NOT depend on |λi |

I Q: How should the step (and H) look like?

I step rescaled with 1
|λi |

I new Hessian: |H| = V |D|V T ;H−1 = V |D|−1V T

I |D| has absolute values of eigenvalues instead of simple
eigenvalues

I idea was mentioned, without proof: Nocedal and Wright
[2006b] or in Murray [2010]

I Saddle free algorithm (formal)
I ∆θSFA = arg min∆θ f (θ) + ∆θT∇θf (θ)
I how far from θ can we trust the first order approx?
I d(θ, θ + ∆θ) = |TaylorAprox2 − TaylorAprox1|
I d(θ, θ + ∆θ) = 1

2 |∆θ
TH∆θ| ≤ 1

2 ∆θT |H|∆θ ≤ ∆
I Lagrange multipliers: stepSF = −|H|−1 ∗ ∇θf
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Recap

I f (θ∗ + ∆θ) = f (θ∗) + 1
2 ∗

∑n
i=1 λi (v

T
i ∆θ)2

I ∆θ =
∑n

i=1 εivi
I vTi ∆θ = εi
I θnew ← θold − α ∗ step
I SGD:θnew ← θ∗ +

∑n
i=1(1− αλi )εi ∗ vi

I Newton: θnew ← θ∗ +
∑n

i=1(1− 1)εi ∗ vi
I damped Hessian: θnew ← θ∗ +

∑n
i=1(1− λi

λi+m )εi ∗ vi
I Saddle Free: θnew ← θ∗ +

∑n
i=1(1− λi

|λi |)εi ∗ vi
I Wanted behavior

I λi > 0, want to go closer to the SP (is the minimum on this
subspace)

I λi < 0, want to go further from the SP (is maximum on this
subspace)
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Experiments

I Practical implementation problems
I hard to compute Hessian (n X n, too large for many

parameters)
I hard to inverse Hessian
I Q: How would you implement it?

I see Appendix 2.

I Results
I MNIST and CIFAR-10, 10x10 downsampled
I 7 layers deep MLP; RNN on Penn Treebank
I optimization: SGD first, continue with SFA
I eigenvalues distribution shifts right
I SFA vs other algo: better for more parameters
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Statistically relevant experiments
I critical points distribution in the ε− α plane
I how the eigenvalues of the Hessian at these critical points are

distributed
I MNIST downsampled

I along optimization path, find nearby critical points
I (Newton’s method: xn+1 = xn − f (xn)

f ′(xn) )
I 20 runs of SFA (random seed)
I 100 jobs - find critical points around parameters from random

epochs (of 20 random SFA runs)
I 100 jobs - find critical points with random sampling (-1, 1)

I CIFAR downsampled
I 3 layer NN, SGD, tanh, 10-300 epochs, random init → save all

params
I Newton’s method

I results (confirms Bray and Dean [2007]):
I eigenvalues distribution shift to the left as the error increases
I critical points concentrate along a monotonically increasing

curve in the ε− α plane
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Results

I Q: Something interesting?
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Conclusion

I Theoretical existence of Saddle Points (others)
I Practical existence of Saddle Points

I (statistically) relevant experiments

I Optimization algorithms: behavior near SP
I New algorithm (Saddle Free algorithm)

I demonstration
I practical implementation, difficulties, framework

I Future work
I better H estimation algorithms
I find new theoretical properties of SP in NN context,

understand statistical property of high dimensional surfaces

I ”Saddle-free Hessian-free Optimization”, Martin Arjovsky
NYU, workshop NIPS 2016
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Other Questions?

Video about the subject (introduction): Bengio [2015]
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Appendix 1A: Fisher Matrix

I the amount of info that X (observable random variable)
carries about θ (unknown parameter)

I f (X |θ) = fθ(X ) probability for X, likelihood for θ

I score = ∂ log fθ(X )
∂θ

I Efθ(X )[score] = 0 (first moment)

I = Efθ(X )[
∂ log fθ(X )

∂θ ] = Efθ(X )[
∂ log fθ(X )
∂fθ(X )

∂fθ(X )
∂θ ] =

Efθ(X )[
1

fθ(X )
∂fθ(X )
∂θ ] =

∫
1

fθ(X )
∂fθ(X )
∂θ fθ(X )dx =

∫ ∂fθ(X )
∂θ dx =

∂
∂θ

∫
fθ(X )dx = ∂1

∂θ = 0

I Efθ(X )[score2] (second moment = Fisher info)

I H = ∂2 log fθ(X )
∂θ2 = ∂

∂θ
∂ log fθ(X )

∂θ = ∂
∂θ

∂fθ (X )

∂θ

fθ(X ) = g ′∗h−h′∗g
h2 =

∂2 fθ (X )

∂θ2

fθ(X ) − (
∂fθ (X )

∂θ

fθ
)2 =

∂2 fθ (X )

∂θ2

fθ(X ) − (∂ log fθ(X )
∂θ )2

I
∫ ∂2 fθ (X )

∂θ2

fθ(X ) fθ(X )dx = 0

I E [H] = −
∫

(∂ log fθ(X )
∂θ )2fθ(X )dx = −FisherMatrix
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Appendix 1B: Natural Gradient Learning in MLP

I Amari [1998]

I q(x) = real distribution; pθ(x) = estimate; find θ which
approximates it best

I Loss = −Eq[logpθ(x)] = Eq[log q(x)
q(x) − logpθ(x)] =

Eq[log q(x)
pθ(x) ]− Eq[logq(x)] = E [log q(x)

pθ(x) ] + entropyq

I Loss(θ) = KL(q||pθ) + const.

I 2nd order Taylor approx: KL(pθ||pθ+∆θ) = 1
2 ∆θTF∆θ

(Berkeley CS 287: Advanced Robotics)

I Q: Why is the Fisher matrix important? Demonstrate
that λi > 0,∀i

I xT ∗ F ∗ x = E [XT ∗ S ∗ ST ∗ X )] = E [(XT ∗ S)2] ≥ 0
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Appendix 1B: Natural Gradient Learning in MLP
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Appendix 2A: Power Iteration (PageRank)

I given A, the algo finds the biggest λi and its eigenvector

I Akx
||Akx ||2

→k v∗1 (principal eigenvector)

I A = VJV−1 ⇒ Ak = VJkV−1 (Jordan decomposition)

I x =
∑n

i=1 civi , random vector x (vi form a base)

I Akx = VJkV−1(
∑n

i=1 civi ) =
VJkV−1c1v1 + VJkV−1(

∑n
i=2 civi )

I Akx = λk1c1v1 + λk1V ( J
λ1

)k(
∑n

i=2 ciei )

I ( J
λ1

)k =k→∞


1 0 0 ...
0 0 0 ...
0 0 0 ...
... ... ... ...

⇒ ( J
λ1

)kei =


0
0
0
...

 , i ≥ 2

I convergence rate: ( J
λ1

)k converges geometrical with (λ2
λ1

) rate

I ||Akx ||2 = λk1c1, Akx
||Akx ||2

→ v∗1 (iterative, no decomposition)
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Appendix 2B: Lanczos algorithm

I in Power Iteration (PI), x ,Ax ,A2x , ... become linear
dependent

I PI is numeric instable

I orthogonalized base for faster convergence

I Krylov subspace x ,Ax ,A2x , ...

I PI throws away previous computation

I make the base orthogonal ui = vi −
∑i

k=1 projukvi (Gram
Schmidt)

I normalize the base ui
||ui ||2

I Lanczos algo
I compute new vector: (wi = Hvi )
I apply Gram Schmidt for wi to make the basis orthogonal
I normalize vi+1 = wi

||wi ||2
I easy to compute the inverse of a matrix, having the Krylov

space (linear combination of its powers)
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