

Understanding AlphaGo Machine Learning papers

Bitdefender ML Team eburceanu@bitdefender.com

June 6, 2016

Intro

NN - Concepts

AlphaGo

Conclusions

Presentation Purpose

- brief NN introduction
- what are the components of AlphaGo (Nature magazine paper, January 2016)
- how do they link
- speculate about mistakes in games 3, 4

Neural Networks I

- NN purpose: given some data, approximate a good function of the input
 - $y_{nn} = output_{nn} = f_{W_f}(g_{W_g}(h_{W_h}(...(input))))$
 - $y_{correct} = output_{correct} = known from data$
 - define how different is y_{nn} from the $y_{correct}$

Neural Networks I

- NN purpose: given some data, approximate a good function of the input
 - $y_{nn} = output_{nn} = f_{W_f}(g_{W_g}(h_{W_h}(...(input))))$
 - $ightharpoonup y_{correct} = output_{correct} = known from data$
 - \blacktriangleright define how different is y_{nn} from the $y_{correct}$
 - ▶ 150 vs 300
 - cat vs dog
 - $(y_{nn} y_{correct})^2$
 - small vs big penalties

Neural Networks II

- minimize cost = "difference" between y_{nn} and $y_{correct}$
- find proper parameters $f = f_{W_f}(X) = W_f * X + b_f$
- each time we make a mistake, find what caused it and make small adjustments in the network (fancy name: back-propagation)
- ▶ **Q**: How W influences the *Cost*?

Neural Networks II

- \blacktriangleright minimize cost = "difference" between y_{nn} and $y_{correct}$
- ▶ find proper parameters $f = f_{W_f}(X) = W_f * X + b_f$
- each time we make a mistake, find what caused it and make small adjustments in the network (fancy name: back-propagation)
- ▶ **Q**: How W influences the *Cost*?
 - iteratively, $W = W \alpha * \nabla_W Cost$ (Taylor)
 - end: W will have a value for which Cost is minimum
 - ▶ **Q**: How else?

Why Go?

- perfect information game and zero-sum game
 - V_{optim} exists (state value, under optim play by all players)
- solving it:
- exhaustive
 - branches^{depth} sequences of moves
 - ▶ chess: 35⁸0
 - go: 250¹50 (3³61 table states)
- search tree
 - truncate (alpha-beta pruning)
 - sampling (Monte Carlo Tree Search MCTS)
 - Q: Pro and cons?

AlphaGo paper

▶ **Q**: Who read the paper?

AlphaGo paper

- ▶ **Q**: Who read the paper?
- "Mastering the game of Go with deep neural networks and tree search"
- David Silver first author, maybe the best RL...human expert? PhD in AI on Go
- in: dataset of expert moves (KGS)
- out: first program that defeats a professional player
- components:
 - Monte Carlo Tree Search (MCTS)
 - ▶ NN for value(state) : $V_{\theta}(s)$
 - ▶ NN for "strategy" (policy), policy(action|state): $p_{\sigma}, p_{\pi}, p_{\rho}$

BlackBox AlphaGo

- $ightharpoonup p_{\sigma}(action|state)$ policy
 - learns to do expert human moves
- $p_{\pi}(action|state)$ policy
 - learns to do fast expert human moves
- \triangleright $V_{\theta}(state)$ value function
 - evaluates a state
- tree search algorithm
- Q: To do what?

Monte Carlo Tree Search I

Monte Carlo Tree Search II

- simulate and find the best move
- statistics
 - ightharpoonup P(s,a) p_{σ} prior probability
 - $ightharpoonup N_v(s,a), N_r(s,a)$ count
 - $W_{\nu}(s; a), W_{r}(s, a)$ additive score for all simulations $(V_{\theta}(s))$ and r(s)
 - ightharpoonup Q(s,a) mixed score
 - ▶ for all legal actions. **Q**: How?
- +asynchronous, +PUCT (exploration factor)

Monte Carlo Tree Search III

Steps

- 1. Selection
 - statistics $t = argmax_a(Q(s_t, a) + u(s_t, a))$ (best edge)
 - $u(s,a) = c_{puct}P(s,a)\frac{\sqrt{\sum_b Nr(s,b)}}{1+Nr(s,a)}$
 - until no more expanded states (L we need to evaluate it)
- 2. Evaluation
 - $V_{\theta}(state_L)$ or
 - reward of rollout with $p_{\pi}(a|state_L)$, for both players
- 3. Backup
 - $N_r + 1, N_v + 1, W_v + V_{\theta}(state_L), W_r + reward$, async, n_{VL}
 - $Q(s,a) = (1-\lambda)\frac{W_v(s,a)}{N_v(s,a)} + \lambda * \frac{W_v(s,a)}{N_v(s,a)}$
- 4. Expansion
 - $N_r(s,a) > n_{thr}$, init all to 0
- run multiple times to build the tree

Neural Nets - tools for MCTS I

- $ightharpoonup p_{\sigma}(action|state)$ policy
 - supervised learning (55%, SotA 44%, eval in 3 ms)
 - expert dataset (30 mil, in: Go board, out: move = action)
 - ▶ 48 planes 19x19, locally preprocessed Go features
 - ▶ 13 layers, conv 5, 3 + ReLU + softmax legal moves
 - used as prior for P(s, a) in MCTS (u(s,a) component)
- $ightharpoonup p_{\pi}(action|state)$ policy
 - supervised, feature-engineered input
 - ► conv + relu + softmax (24%)
 - simple and very fast (eval in 2 μ s)
 - used for rollout

Neural Nets - tools for MCTS II

- \triangleright $p_{\rho}(action|state)$ policy
 - same structure, init with p_{σ}
 - ▶ 80% vs p_{σ}
 - ightharpoonup play against itself (reinforcement learning, ± 1 reward)
 - not exactly itself, but sampling from previous versions

- $ightharpoonup V_{\theta}(state)$ value function
 - expected value of reward
 - supervised learning on p_{ρ} (playing history)
 - ► sample 1 state per game, 30 mil (Q: Why?)
 - ightharpoonup similar architecture with p_{σ} (without softmax)
 - regression, RL, unbiased estimator of the reward

 - average for all symmetries (8)

Conclusions

- ▶ **Q**: Why it is not maximizing the margin? (game 3)
- Q: Time management?
- ▶ **Q**: Why did it figure out so late that it is loosing? (game 4)
- Conclusions
 - great things are simple
 - lots of engineering challenges (not addressed today)
 - ▶ insights and experience in the field (David Silver, Aja Huang)

Other Questions?

References

- ► AlphaGo paper, payed from Nature, just request it from the ML team, https://deepmind.com/alpha-go.html
- Reinforcement Learning course, http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Neural Nets course, http://cs231n.stanford.edu/
- Reinforcement Learning Book, Algorithms for Reinforcement Learning, Csaba Szepesvari
- MCTS survey, http://www.cameronius.com/cv/mcts-survey-master.pdf