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Presentation Purpose

I brief NN introduction

I what are the components of AlphaGo (Nature magazine
paper, January 2016)

I how do they link

I speculate about mistakes in games 3, 4
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Neural Networks I

I NN purpose: given some data, approximate a good function
of the input

I ynn = outputnn = fWf
(gWg (hWh

(...(input))))
I ycorrect = outputcorrect = known from data
I define how different is ynn from the ycorrect

I 150 vs 300

I cat vs dog

I (ynn − ycorrect)
2

I small vs big
penalties
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Neural Networks II

I minimize cost = ”difference” between ynn and ycorrect
I find proper parameters f = fWf

(X ) = Wf ∗ X + bf
I each time we make a mistake, find what caused it and make

small adjustments in the network (fancy name:
back-propagation)

I Q: How W influences the Cost?

I iteratively, W = W − α ∗ ∇WCost (Taylor)
I end: W will have a value for which Cost is minimum
I Q: How else?
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Why Go?

I perfect information game and zero-sum game
I Voptim exists (state value, under optim play by all players)

I solving it:
I exhaustive

I branchesdepth sequences of moves
I chess: 3580
I go: 250150 (3361 table states)

I search tree
I truncate (alpha-beta pruning)
I sampling (Monte Carlo Tree Search - MCTS)
I Q: Pro and cons?
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AlphaGo paper

I Q: Who read the paper?

I ”Mastering the game of Go with deep neural networks and
tree search”

I David Silver - first author, maybe the best RL...human
expert? PhD in AI on Go

I in: dataset of expert moves (KGS)

I out: first program that defeats a professional player
I components:

I Monte Carlo Tree Search (MCTS)
I NN for value(state) : Vθ(s)
I NN for ”strategy” (policy), policy(action|state): pσ, pπ, pρ
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BlackBox AlphaGo

I pσ(action|state) policy
I learns to do expert human moves

I pπ(action|state) policy
I learns to do fast expert human moves

I Vθ(state) value function
I evaluates a state

I tree search algorithm

I Q: To do what?
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Monte Carlo Tree Search I

9 / 16



Monte Carlo Tree Search II

I simulate and find the best move
I statistics

I P(s, a) - pσ prior probability
I Nv (s, a),Nr (s, a) - count
I Wv (s; a),Wr (s, a) - additive score for all simulations (Vθ(s)

and r(s))
I Q(s, a) - mixed score
I for all legal actions. Q: How?

I +asynchronous, +PUCT (exploration factor)
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Monte Carlo Tree Search III

I Steps
1. Selection

I statistics t = argmaxa(Q(st , a) + u(st , a)) (best edge)

I u(s, a) = cpuctP(s, a)

√∑
b Nr(s,b)

1+Nr(s,a)

I until no more expanded states (L - we need to evaluate it)

2. Evaluation
I Vθ(stateL) or
I reward of rollout with pπ(a|stateL), for both players

3. Backup
I Nr + 1,Nv + 1,Wv + Vθ(stateL),Wr + reward , async, nVL
I Q(s, a) = (1− λ)Wv (s,a)

Nv (s,a)
+ λ ∗ Wr (s,a)

Nr (s,a)

4. Expansion
I Nr (s, a) > nthr , init all to 0

I run multiple times to build the tree
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Neural Nets - tools for MCTS I

I pσ(action|state) policy
I supervised learning (55%, SotA 44%, eval in 3 ms)
I expert dataset (30 mil, in: Go board, out: move = action)
I 48 planes - 19x19, locally preprocessed Go features
I 13 layers, conv 5, 3 + ReLU + softmax legal moves
I used as prior for P(s, a) in MCTS (u(s,a) component)
I δp = ∂log(p(a|s))

∂p

I pπ(action|state) policy
I supervised, feature-engineered input
I conv + relu + softmax (24%)
I simple and very fast (eval in 2 µs)
I used for rollout
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Neural Nets - tools for MCTS II

I pρ(action|state) policy
I same structure, init with pσ
I 80% vs pσ
I play against itself (reinforcement learning, ±1 reward)
I not exactly itself, but sampling from previous versions
I δp = ∂log(p(a|s))

∂p ∗ r(sT )

I Vθ(state) value function
I expected value of reward
I supervised learning on pρ (playing history)
I sample 1 state per game, 30 mil (Q: Why?)
I similar architecture with pσ (without softmax)
I regression, RL, unbiased estimator of the reward
I δθ = ∂log(Vθ(s))

∂θ ∗ (z − Vθ(s))
I average for all symmetries (8)
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Conclusions

I Q: Why it is not maximizing the margin? (game 3)

I Q: Time management?

I Q: Why did it figure out so late that it is loosing? (game 4)
I Conclusions

I great things are simple
I lots of engineering challenges (not addressed today)
I insights and experience in the field (David Silver, Aja Huang)
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Other Questions?
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