Learning a Robust Society of Tracking Parts using Co-occurrence Constraints

Elena Burceanu^{1,2,3} and Marius Leordeanu^{1,2,4}

eburceanu@bitdefender.com, marius.leordeanu@imar.ro

¹ Bitdefender, Romania, ² Institute of Mathematics of the Romanian Academy

- ³ Mathematics and Computer Science, University of Bucharest, Romania
- ⁴Automatic Control and Computer Science, University Politehnica of Bucharest, Romania

Bitdefender (

Motivation

- Stability through steadiness: Each pathway has golden members (classifiers and first frames). Their vote always count and they never loose their status.
- Robust Adaptation: Parts promote to a higher role or update, only if they are validated in time, based on continuous cooccurrences supervision signal.

Contribution

- 1. Co-occurrences guided supervision. Train only on **Highly Confident Frames**.
- 2. Different **reliability roles** for FilterParts classifiers that prove their value in time.
- 3. Society of Tracking Parts (STP): combining votes from a robust conservative pathway with a more adaptive and up-todate one.

1. ConvNetPart

- Deep end-to-end architecture
- Segmentation task for obj center prediction
- Provides **robust adaptability** to change

Training

• On **Highly Confident Frames** (HCFs): frames where the different and complementary pathways agree.

• Robust frame to frame tracking: Each move is based on strong co-occurrences of votes at a single location.

4. Efficient one sample vs. all strategy for learning FilterParts classifiers.

• Update on the first initial (gold) frames too.

2. FilterParts

Choosing Parts:

- each **part** has a corresponding **patch** and differs from other by size, location and its reliability role
- choose only highly discriminative linear filters over the feature maps
- **positives** inside the voted bounding box, negatives outside

Promoting parts validated in time:

- each part votes for the target center and the votes are **monitored** over time
- parts that vote **consistently in agreement** with the chosen center are promoted

• roles: candidate, reliable and gold

4. One sample versus all

Efficient multi-class filter learning:

- Weighted least squares needs **n** matrix inversions $(\min \frac{1}{n} \| \mathbf{W}^{\frac{1}{2}} (\mathbf{D}\mathbf{c}_i - \mathbf{y}_i) \|^2 +$ $\lambda \mathbf{c}_i^{\top} \mathbf{c}_i$
- Theoretical novelty: the weighted solution has the same direction with the simple one, and we computed the exact ratio
- Our Theorem: Given $y_{-} = 0, y_{+} =$ $1, w_{-} = 1, w_{+} = w_{i} = n - 1, n$ the number of classifiers and c_i the solution to least square: $c_i_weighted = \frac{n}{1+(n-1)\mathbf{d}_i^{\top}\mathbf{c}_i} * c_i$

Optimizations:

- Single matrix inversion for all parts
- Matrix Inversion Lemma to rewrite the equation and invert 200 times smaller ma-

on highly confident frames

(Robust SOTA) Results

Trackor	VOT17 Dataset [1]		
TIACKEI	EAO	$R\downarrow$	$A\uparrow$
\mathbf{STP} (ours)	0.309	0.76	0.44
CFWCR [2]	0.303	1.2	0.48
ECO [3]	0.28	1.13	0.48
CCOT [4]	0.267	1.31	0.49

Metrics:

- EAO: sota on VOT17; 3rd score on VOT16
- R: STP outperforms the published methods in terms of **robustness** on both VOT17 and VOT16 [5] by a large margin.
- We strongly outperform the others on occlusion (identified by VOT17/16 as the most difficult case)

Ablation study

Version	VOT17 Dataset [1]		
	EAO	$R\downarrow$	$A\uparrow$
FilterParts	0.25	0.99	0.42
ConvNetPart	0.20	2.09	0.43
Combined	0.309	0.765	0.44
One role	0.262	0.99	0.44
Reliability roles	0.309	0.765	0.44
No update	0.28	0.95	0.43
Full update	0.284	0.92	0.44
HCFs update	0.309	0.765	0.44

Elements that significantly improved our final performance:

• Combining the **two pathways** (one robust and one that easily adapt to changes) • Validating parts in time based on **co**occurrence signal between parts

 trix

We used the exact same set of parameters on all videos from both VOT17 and VOT16.

Occlusion and other difficult cases

• ConvNetPart update only on **HCFs** (also a form of co-occurrence between the two pathways)

References

[1] Kristan et al. VOT17. In *ICCV Workshops*, 2017.

[2] He et al. CFWCR. In *ICCV Workshops*, 2017.

[3] Danelljan et al. ECO. In CVPR, 2017.

[4] Danelljan et al. CCOT. In ECCV, 2016.

[5] Kristan et al. VOT16. In ECCV Workshops, 2016.