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A B S T R A C T

"A process cannot be understood by stopping it. Understanding must move
with the flow of the process, must join it and flow with it."

Frank Herbert, Dune
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A C R O N Y M S

CShift Consensus Shift.

SFSeg Spectral Filtering Segmentation.
SFSeg++ Spectral Filtering Segmentation with multi-channel learning.
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1 I N T R O D U C T I O N

The eyes are our most used sensor in the body, backed up by the most com-
plex processing architecture in the brain, consisting of hundreds of millions of
neurons. Compared with the tactile sense, auditory, taste, or smell, seeing is
by far our most important help in interacting with the world [53], with almost
30% of the brain being involved in visual-related tasks. But this seems natural
when up to 90% of the information processed in the brain is visual.

Our visual system design principles are shared among all primates [66], all
having increased dependence on the vision rather than on smell, which is the
most prevailing sense in mammals [64]. Based on those current findings in
neuroscience, we can argue that the vision tasks, right from the nature of its
input sensor, deal with the largest and the richest flow of information out there.

The brain is the organ responsible for learning, and vision uses a consider-
able share of its resources. Since we as humans evolve in understanding and
interacting with the environment, relying primarily on our two visual sensors,
we can infer that, if we want to build in computers capabilities similar to ours,
we should focus on vision first.

A classic view in the cognitive psychology [51] emphasizes that the direct
perception has a vibrant stream of information, already containing most of the
complex information you need. This view is also being shared in some of the
top computer vision labs [159]. Based on this hypothesis, as opposed to having
an embodied structural representation bias, we can speculate that vision has
the greatest potential to further make use of its input, without explicit supervi-
sion, either by using supervision intrinsic to data or just by correlating it with
other sensors.

A natural approach from the machine learning community was to focus
more on the most powerful predicting signal: vision, the richest source of infor-
mation. Over time, computer vision laboratories exploited it and continuously
challenged the status quo through novel problem formulation and innovative
algorithms, following the latest hardware advances. But in the latest years, we
see great efforts in switching from vision-only approaches to other modalities
[100, 159], synchronizing multiple domains or tasks [190, 92], trying to simu-
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1.1 motivation: tracking and segmentation in vision 3

late the senses consensus towards better generalization and lower amounts of
labeled data.

1.1 motivation: tracking and segmentation in
vision

Object tracking and segmentation in video was a good subject to choose for
my PhD subject. What intrigued me about it from the beginning and got my
interest was that those tasks seemed really simple (or simple to do), but the
best methods were fragile compared with the expectations: "How could the
algorithm be so off the target?", "This is way too simple. Why didn’t it work?".
So it was clear that I was missing something when I evaluated the difficulty
of the process for a computer. I was also attracted by the unsupervised setup
(or at least the self-supervised one), where you don’t rely so much on a large
number of new labels, but you can find an intrinsic way (through the algorithm
or the data) to guide the learning.

So I choose tracking as it represents one of the most straightforward proofs
that you are getting some basic, physic interactions rules, that you are follow-
ing something, and seems to be the first step in making sense out of a video.
You do not need to put a label or to understand the problem explicitly. It is
something we as humans (but also animals) do involuntarily all the time and
without this primary task "solved" by the brain, our everyday life activities
would look completely different (maybe also the dreams). For instance, track-
ing helps you isolate the pixels and the parts of an unseen object, allowing you
to "reserve" a new class for it or further letting you put on a known label.

Tracking is a fundamental task that is learned by the brain. Babies are not
born knowing how to track, but they master the skill pretty well after the first
three months of life and can do it without specific supervision. They somehow
learn to interpret their retina signals towards tracking, just by being exposed
to the environment with all their senses.

seeing video "samples".
So it is not something we are born with but is something we are made for

to acquire very fast, and we might have developed over time some kind of
structural bias in our brain that facilitates this.

Of course, the skill is not perfect even for adults, and optical illusions best
exploit this. Usually, the brain auto-completes the missing information instead
of flagging it as missing or tries to adjust it to fit the expectations [45]. Thus,
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the brain optimizes towards the sentiment of control and calm, allowing us to
have a "fake" sensation of continuity in the observed world.

Nevertheless, while tracking is an effortless task for us humans, there is still
a substantial qualitative gap between human and computer performance. This
is true except for several standard classes (like pedestrians or vehicles), where
the algorithm’s effectiveness is due to focusing on the object class appearance,
trained on a large amount of labeled data, rather than on the tracking task.

Tracking task is a basic block when building computer vision fundamental
research

applications,
and I resonate with the idea that for being able to create complex things, the
first necessary thing to do is to really understand and try to improve some of
its fundamental sub-tasks. The fundamental research is crucial because it puts
structure and reasoning ahead of empirical validations. Otherwise, we might
spin in a circle and miss the critical observations needed to evolve our current
understanding and solutions. Of course, we should stay grounded in the real
world (from which the real supervision comes) and validate the theoretical
results in applied solutions, linking the concepts and making them valuable
and tangible in the real world. So, tracking is not the cherry on the cake, but
rather its foundation, the cake’s genoise, the building block essential for having
a cake, and later on, a cherry on top of it.

1.2 contribution and impact

The main focus of my thesis is to understand the objects in video, video object
understanding

that con-
tinuously evolve in space and time by analyzing them under tracking and seg-
mentation tasks context. We center our efforts towards exploiting the inherent
spatio-temporal consistency of the object, observed under multiple levels by
different parts of the system. Trusting their consensus allows us to rely only
on a low quantity of supervision in the process.

context in the literature We focus on finding the target in the video by
extracting more helpful information based on space and time consistencies of
different actors at multiple levels. This contrasts with other works in which the
time axis is neglected or used only for some basic smoothing. Space and time
consistent and natural integration is in fact one of the main points of interest in
Computer Vision nowadays, not only in tracking. Therefore, our contributions
focus on redesigning models to work with videos in a compact way, rather
than frame by frame, managing to take full advantage of the temporal axis, as
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efficiently as possible. While focusing on extracting valuable information by
a consistent and efficient integration of the temporal axis with the spatial one,
we reach other several aspects, which we prove further in our work that are
key components in achieving this ambitious purpose:

a. space-time consistency We integrate in our work the space and time
dimensions thoughtfully. In STP (Chapter 3) the roles in society are slowly
but continuously updating over time, changing the part’s priority in voting.
SFSeg++ (Chapter 4) masters this spatio-temporal integration by seeing the
video as a densely connected space-time volume in which we cluster the pixels
uniformly over the three dimensions. SFTrack++ (Chapter 5) is similar from
this point of view since we used the previous approach and further exploited
it for the tracking task. CShift (Chapter 6) works only at the spatial level, but
we will address the space-time multi-task graph in future work.

b. the power of the consensus We take the most out of the ensemble
and exploit it by using a wide variety of combinations at different levels that
enabled us with increasingly powerful ensembles. We start in STP by combin-
ing many weak parts computed over deep features with a strong end-to-end
pathway. Next, we learn to combine state-of-the-art top methods, directly in
SFSeg++ or in feature space in SFTrack++, based on natural connections be-
coming visible through clustering. In CShift, we take a step back and apply
the ensemble at multiple levels. We combine towards consensus:

1. various architectures and complexity (from simple and similar UNet edges
in the graph to complex experts)

2. multiple training datasets (coming with a different data distribution for
each expert)

3. numerous domains, enriching the semantic diversity (from simple edges
to complex segmentation)

4. multiple-paths reaching a destination, through varied intermediate rep-
resentations

c. exploiting multiple intermediate representations We get the
first informal hint on the value of having distinct representations in an ensem-
ble in our Society of Tracking Parts (STP), where both intermediate features,
but also the basic RGB input worked together. Then, SFTrack++ confirms that
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for tracking, having a semantic segmentation level in the middle of the pipeline
towards the final prediction helps a lot. So we pose the following question in
CShift and validate the power of using multiple (13) representations from a va-
riety of tasks (edge detectors, semantic segmentation, depth, etc.) when look-
ing for consensus. This iteratively improves the performance and converges
to a significantly better solution without additional supervision. We prove it
only in the spatial domain and, as future work, we plan to expand the CShift
multi-task graph over temporal dimension, allowing us to also have a tracking
task.

d. a limited quantity of supervision In our solutions, we chase a lower
amount of supervision. We start with an unsupervised solution for tracking in
STP (using only VGG [144] pretrained on ImageNet [34]). Next, in SFSeg sin-
gle channel solution, we rely on natural properties and connections revealed
by spectral clustering. We add a layer on top of the unsupervised spectral clus-
tering solution (in SFSeg++ and SFTrack++) by combining it with a learning
component over multiple channels to strengthen it using available labeled data.
Later on, in CShift, we approach an unsupervised solution from the task point
of view. We take advantage of existing knowledge and data from expert mod-
els, balancing both the need for supervision and its high cost. We update the
initial pseudo-labels coming from experts using the consensus signal reached
by the before mentioned powerful selection-based ensemble.

e. experts: making use of existing models I think that using al-
ready existing knowledge, consolidated over many research years and multiple
datasets is currently underestimated. So we gradually exploit this source of la-
beling and information over the thesis, starting from pretrained features in STP,
simple or learned ensembles over expert models in SFSeg++ and SFTrack++,
to using experts’ consensus as supervision signal in CShift.

1.2.1 Detailed contributions in each individual work

In the first paper, Learning a
Robust Society of
Tracking Parts
using
Co-occurrence
Constraints

we show the importance of having multiple complemen-
tary parts in an ensemble. We observe a novel theoretical property that allows
us to introduce a computational trick for simultaneously learning many linear
filters, with an efficient closed-form formulation. We combine a robust path-
way composed of those multiple, but simple, parts learned on top of deep
features with a more adaptive one, a deep net trained end-to-end. All those
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Figure 1: The storyline and contributions map of my thesis.

components, parts of the society, have their role and work together influencing
the overall decisions. We show here that the ensemble’s diversity and the num-
ber of parts are critical components in a tracking system. During this work, we
identify the limitation caused by the rigid labeling in tracking. These bounding
boxes introduce many noisy signals during each update and voting step of our
unsupervised solution.

So we investigate next A 3D
Convolutional
Approach to
Spectral Object
Segmentation in
Space and Time

a more fine-grained task, the object segmentation.
Having a segmentation mask for pointing the target object in the first frame is
a clear advantage in front of the bulky bounding box, even though it is harder
to label. We propose a solution for refining an input segmentation in an un-
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supervised fashion. We start by formulating the object segmentation problem
as a spectral graph clustering in space and time video volume, in a similar
way with the normalize cut [141]. Differently, we come with a theoretical con-
tribution, an approximation that allows us to operate both on the temporal
dimension and with a large spatial resolution. We started with a fully unsu-
pervised solution, that refines an input segmentation based on both temporal
and spatial dimensions, clustering the object target pixels in the video volume,
iteratively towards convergence. Next, we introduce a learning module that
combines over multiple input sources (e.g. different segmentation solutions),
highlighted by the spectral clustering module. Finally, we combine the tradi-
tional algorithm for power iteration with an end-to-end neural net, resulting
in a powerful ensemble.

We prove further SFTrack++: A
Fast Learnable
Spectral
Segmentation
Approach for
Space-Time
Consistent
Tracking

that using the segmentation task as an intermediate do-
main for tracking improves the overall results. We integrate the above-proposed
segmentation solution into tracking, showing that both the use of an additional,
more fine-grained domain and maintaining an object consistency over space
and time dimensions are also key components in tracking. The intuition here
is based on the fact that the spectral clustering solution applied directly over
the bulky bounding box with a lot of noisy content inside the box, serving as a
positive label would not reach a better solution. But a mask closer to the natu-
ral object shape (like the segmentation) could take advantage of the clustering,
going towards the natural contour of the object in an unsupervised manner.
And we prove this intuition empirically.

In the light of these findings, Self-Supervised
Learning in
Multi-Task
Graphs through
Iterative
Consensus Shift

we start investigating a more general one, ex-
trapolating from one domain to multiple ones, reducing the supervision level
and exploring in more depth the diversity at different levels (architecture, train-
ing data, representation, and prediction pipeline).

1.3 open problems
future work We further plan to extend this multi-domain graph to the
temporal domain, where the tracking task will be a node for which we can test
the graph’s performance. The space-time consistency will be seen here through
the "eyes" of a large and powerful system.

ethical impact The tracking task might be controversial from the ethical
Privacy
Preserving Image
Distribution

perspective. In this direction, I worked with my team at Bitdefender on so-
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lutions that guarantee privacy right from the ground, at the theoretical level.
As a result, we have a patent-pending solution for Privacy-Preserving Image
Distribution, a system that can operate directly on encrypted data.

1.4 outline
chapter 1 In this current chapter, I start by presenting the importance of
vision in human intelligence, followed by tracking and segmentation tasks’ rel-
evance in the broad computer vision field, my motivation when choosing this
as my PhD subject, and the contribution and impact of my work.

chapter 2 I present a brief outline of the tracking task, challenges, basic
approaches, and some more innovative ideas in the field, but also the close
connection between the tracking and the segmentation task.

chapter 3 STP [14] is our first tracking solution. STPIt tackles the problem
of fast adapting to new appearances of the target while avoiding drifting to
distractors. We address those challenges by proposing a system composed of
two pathways, a conservative and a progressive one, working as a society to
reach a consensus. The first is robust, composed of many parts, which are lin-
ear classifiers over deep pretrained features. We introduce a novel theoretical
property that gives us a closed-form solution and efficiently computes all the
classifiers simultaneously. Each linear part has a dynamic role in voting for
the object center, updated in time based on co-occurrences with the final per
frame system decision. In contrast, the second pathway is more adaptive, keep-
ing track of the recent changes in the object’s appearance. From the structural
point of view, we use a convolutional neural network which we update based
on the two pathways consensus signal. This agreement is also used further, as
a supervision signal for training the linear parts of the society. I summarized
this approach in Fig. 2.

chapter 4 This chapter explores a mix of traditional SFSegalgorithms for spectral
clustering [16] integrated in nowadays deep learning, for an intermediate task
to tracking, object segmentation. While it is way harder to annotate, we argue
that object segmentation has more natural labels (the masks following the ob-
ject contour) than rigid, error-prone bounding boxes in tracking. This aspect
of being closer to the true shape of the object makes the segmentation task
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Figure 2: STP: ECCV 2018, Visual Object Tracking Workshop - Chapter 3.

SFSeg++a proper one for our unsupervised spectral clustering approach in the video
volume. We claim that the strongest cluster in the video’s spatio-temporal
pixel-level volume is the segmentation of the main object. We propose an ap-
proximation for computing the leading eigenvector representing this cluster in
a very efficient way, orders of magnitude faster than classical approaches, mak-
ing the dense pixel-level clustering approach for the object segmentation task
in video possible. I emphasise key components in Fig. 3.

Figure 3: SFSeg++: part at IJCAI 2020, under review 2021 - Chapter 4.

chapter 5 After SFTrack++concluding on the segmentation task solutions described
above, we integrate it as a halfway task towards tracking. Our experimen-
tal setup backed up our argument that segmentation is a useful intermediate
representation for tracking, particularly the SFSeg 3D spectral approach that
integrates the temporal dimension harmoniously and naturally with the spatial
one. Fig. 4 visually presents the approach.

SFTrack++ work had two stages. I first submitted the proposal for NeurIPS
2020 Pre-registering workshop, where papers are evaluated based on the scien-
tific interest, the soundness of the approach, and the experimental setup plan.
This changes the usual focus from following the results against state-of-the-
art, forcing you to clear up your direction and all the experiments beforehand.
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Figure 4: SFTrack++: NeurIPS 2020 Pre-registration Workshop - Chapter 5.

Next, after the proposal was accepted, I went on with the proposed experi-
ments, and the results were positive. Thus, I proved that the approach was
valuable and the hypothesis was correct.

chapter 6 We CShiftexplore in more depth the importance of having other do-
mains as intermediate representations of input. We build a multi-task graph
where each node has a different view of the input, somehow rephrasing the
initial information from other points of view (domains). For instance, starting
from a rgb view, some examples for other nodes in the graph are depth, edges,
semantic segmentation, surface normals. One of the main difficulties here is
having a labeled dataset with annotations for all domains, for each rgb sample.
We address it by using pre-trained expert models for the direct edge (rgb →
domain). We train the transformation edges using those pseudo labels in the
first iteration. We update them afterward by introducing a selection-based con-
sensus algorithm, in a fully unsupervised manner. We focus on the consensus
shift over iterations among multiple and very diverse pathways and models.

Figure 5: CShift: under review 2021 - Chapter 6
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chapter 7 As future work, we extend in Chapter 7 the multi-task graph
in the temporal domain, adding tracking and other time-dependent tasks. We
plan to explore architectures that integrate the temporal dimension differently,
while keeping the amount of computations manageable. The first variation
is around seeing an input node as a volume in space-time, versus having a
different node for each moment in time. Another direction keeps track of the
number of connections in the past and tests whether to keep one only for the
currently predicting task or one for each task. To reduce the number of edges
we need to train, I will also consider distilling the graph at a certain timestamp
in one hidden representation and using it as input for the next frame. Finally, I
will integrate the per-frame multi-task graph over time, by combining our two
solutions: CShift and multi-channel SFSeg. I show several variants to explore
the spatio-temporal graph connections in Fig. 6.

Figure 6: Temporal CShift: Chapter 7.

I also Ethical tracking
and
segmentation

add at the end an ethical consideration discussion on the implications
for tracking and segmentation tasks but also a method to avoid the serious pri-
vacy issues that come to light. First, I show the problems that could arise when
technical solutions are not used for the greater good. Then, I briefly present
a cryptographic layer that can be added on top of tracking and segmentation
and can solve most of the concerns. We have a patent-pending application for
this formulation.



2 V I S U A L T R A C K I N G A N D
S E G M E N TAT I O N O V E R V I E W

2.1 tracking description
Computer Vision deals with making computers achieve an in-depth under-

standing of the world, using the visual field (images or videos). It all starts
from the RGB space of visual input, with a multitude of other possibilities to
augment via sensors or other derived domains (e.g. depth, grayscale, halftone,
surface normals). But, except for the spatial dimension of the input, there is
also a temporal one, a video containing more information than just the simple
sum of the frames, e.g. the relation between them. Object tracking in video
addresses this exact interconnection between frames, aiming to find not only
the link between them but, intrinsically, also the transformations to which a
tracked object of interest is passing through by focusing and detecting it in a
video at each point in time.

Object tracking is a fundamental task in computer vision, with many appli-
cations basing on it and requiring an excellent performance (e.g. autonomous
driving, visual surveillance, augmented reality, traffic control, gesture recogni-
tion).

common problems While object tracking is a seamless task for humans, it
is not the case for computers. There are a lot of difficult cases, where the al-
gorithms show their limitations. For instance, sudden changes from frame to
frame (in the tracked object appearance), background clutter that could make
the model jump on distractors or drift over time, or camera motion that unex-
pectedly changes the focus point are all interesting and currently challenging
cases.

2.1.1 Formal definition

Online single object tracking consists in finding the correct trajectory of an
object (or a part of it) in a video, meaning its position in space as a function in
time. Let X be a video, a volume of pixels in space-time, with N = Nf×H×W

13
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pixels, where Nf is the number of frames and H×W is the frame size. Let
bboxt = (xt,yt,wt,ht) be the prediction at frame t, where bbox0 is the first
bounding box that sets up the tracking region. The tracker does not have
access to the entire video, but only to the current frame t. It uses its current
state implementation to recall past predictions or other information considered
important by the author for the next frame’s predictions. Let state0 be the
initial tracker state derived from the initialization with bbox0. So the recurrent
equation that unfolds the tracking trajectory is the following:

bboxt, statet = tracker(Xt, statet−1). (1)

2.1.2 Evaluation

A tracker is evaluated taking into account multiple metrics, the most used
one being the IoU accuracyaverage overlap of the prediction with the ground-truth bound-
ing box (Intersection over Union). Some benchmarks also measure the number of

failures
number

of failures. Others even restart the tracker when they consider a fail (when
a tracker misses the target for a while, failing to recover). speedSpeed is also an
important factor, mainly for real-world application scenarios. Another aspect
of tracking is the tracker’s internal state, which should have a manageable size
even for very long videos.

online vs. offline tracking The offline approach involves the tracker
having access from the start to the entire video. For example, it can be used to
analyze a recorded soccer game or as a pretext task for self-supervised learning
of better video embeddings [40]. Nevertheless, this is a less common approach
and, if it is not specified otherwise, tracking refers to online tracking as for-
mally defined above in Sec.2.1.1.

offline learning trackers Most of today’s applications rely on a very
performant appearance model for the specific category of the object of interest
(e.g. car, pedestrian, dog, or other animal class, a product class). Usually, the
detection problem for several classes of objects is very well solved, based on
large, supervised datasets. In this case, the difficulty is differentiating between
instances of the same class, becoming a matching problem between instances
from consecutive frames (e.g. cluttered frames with multiple, close and similar
cars or pedestrians). Offline learning for trackers refers to the fact that all
learning is done a-priori, offline. And at test time, on a new video, the model
is only applied, nothing is updated. focus on specific

classes
The advantage of this approach is that it
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is very fast and can benefit from a large amount of training data, but only for
specific classes, known in advance. The major disadvantage of this approach
is that it cannot adapt to a new kind of object.

online learning trackers In contrast, online training in trackers focuses
on the general object tracking problem, where you try to focus on the

tracking task
understand the task

rather than a particular object class appearance. Here, you need to build an ap-
pearance model on the fly during tracking instead of relying on a very precise,
a-priory learned model that recognizes the objects within a class. This is the
direction on which I center tracking in my thesis.

tracking-by-detection paradigm Once with the large advances in object
detection, most of the newly proposed tracking pipelines moved to a tracking-
by-detection approach. First, an independent detector is used to obtain detec-
tions within a search zone (usually near the target position from the last frame).
Next, the tracker predicts a bounding box using those candidates, performing
associations with the current target trajectory.

2.2 segmentation is essential in tracking
The key in tracking is finding the right balance between having an adaptive

approach while being robust. If you are too robust, you fail to adapt to new
appearances and situations. Otherwise, if you are too adaptive, you risk too
much to be fooled by distractors and slowly accumulate errors into the target
object representation. The major problem that appears in tracking is drifting

driftingand it also derives directly from the task definition. The tracker is initialized
with a bounding box that, besides the main object of interest, contains noise
like close to object background pixels. Those arguments and empirical obser-
vations motivate us to use a more refined representation for the tracked object,
the object’s segmentation. This is a more natural and precise representation
compared with the rigid bounding box. We show empirically that by enforc-
ing a segmentation representation in the hidden layers of the pipeline is of
great help in our tracking setup.
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2.2.1 Formal definition

Different from tracking, object segmentation in video is way more meticu-
lous. Instead of describing the object’s position in time using two points in
each frame, you need to precisely indicate each point situated on the object’s
contour. When the contour and the volume inside it are a convex set, this rep-
resents the full object. But when it does not, It becomes difficult to define the
object (e.g. when the object has two disjoint parts). So the proper formulation
for the object segmentation task is to have a pixel-wise prediction map for each
frame, where the value in each pixel represents the probability of that pixel
to be part of the target object or not. In a similar manner with tracking, we
define the input and the output for a step in the segmentation algorithm that
unfolds the entire video object segmentation in Fig. 2. Starting from video X
of Nf×H×W size, where Nf is the number of frames and H×W is the frame
size, let segm_mapt : H ×W → [0, 1] be this pixel-level segmentation map.
The first state, state0 is initialized using the ground truth segmentation map,
segm_map0.

segm_mapt, statet = segmentation(Xt, statet−1). (2)

For a uniform approach over tasks, we use the same convention for tracking.
For this, bboxt in eq. 1 is replaced with bbox_mapt : H×W → [0, 1].

2.2.2 Evaluation

Nowadays, the most common way of measuring the quality of object seg-
mentation for one frame is Intersection over Union (IoU) IoU accuracyat pixel-level between
the ground truth segmentation and the predicted segmentation (also called
Jaccard similarity score). For video, we average over all frames. This way of
simply using an average over a per frame metric is not very informative and
does not adapt properly to the temporal dimension. Therefore, we introduce
in Chapter 4, TCONT: TCONTa Temporal consistency metric that focuses on a video
seen as a whole as opposed to a video seen just as a set of frames. Briefly,
its formula is based on transforming the predictions with optical flow in both
directions. For each frame, we average over those transformations and the
original prediction and compute the IoU between ground truth and the aver-
age. Ideally, the average should land on a similar map, which represents a
consistent representation.
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We come to this after observing that some methods could have a high IoU
per frame, but missing the desired coherence and consistency of the object over
time. And those limitations become highly visible specifically when you look
at segmentation using the older tracking evaluation metrics like robustness.
For instance, in real applications, the consequence of failing to track in one
frame could lead to total failure, so you need to put more weight on having
consistent predictions in time because a low IoU in one frame (one mistake)
might impact the entire video.

2.2.3 Types of segmentation

Historically, object segmentation in video is more connected with salience,
object discovery, foreground-background segmentation, formulated in the con-
text of having access to the entire video, namely offline video object segmen-
tation. But more recently, the main approach is also the online segmentation,
in a similar way with tracking (with online or offline learning). Another direc-
tion in which segmentation solutions differ is the degree of detail. While some
solutions work on a lower density grid, super-pixel level, or patches, our seg-
mentation solution in Chapter 4 is very efficient, making the pixel-level, dense
approach possible.

2.3 approaches over the years
Very fast template matching using correlation filters, new and larger datasets

enabling deep learning models, siamese nets used for template matching, IoU
predictors, and bounding box regressors contributed over time to the signifi-
cant advances in the field of object tracking. The main types of algorithms used
in recent years were based on Correlation Filters, Basic Neural Networks, and
in particular Siamese Networks. Next, I will briefly present a representative
method for each of the approaches.

2.3.1 Discriminative Correlation Filters

Correlation-based trackers started with MOSSE [11] and involve applying
the correlation operator between an input frame and the searching template
(element-wise multiplication) in the Fourier domain. KCF [63] notices and
takes advantage of the redundancies in the data matrix (when using multiple
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patches from a frame), by using a circulant matrix. This approach taken in the
Fourier space makes the solution both performant (due to exploiting all nega-
tive examples), but also extremely fast (up to 400 FPS). Next, CCOT [32] moves
the problem in the contiguous space, making it possible to integrate feature
maps of different resolutions, giving up speed. This chapter of discriminative
correlation filters in online tracking ends up with ECO [29], which optimizes
CCOT. It allows a fast adaptation to the appearance model with cheap updates
(in the Fourier space) for each frame, with a multi-scale and similar sample
grouping mechanism.

2.3.2 Basic Neural Networks

MDNet [122] is the first neural net approach that obtained effective represen-
tations for tracking. The core idea is that the neural network model has two
parts, the first one is composed of domain-independent layers and the final one
has domain-specific layers. The first part is pre-trained on a set of videos with
tracking ground-truth. In contrast, the second is updated online using the cur-
rent video, differing from one video sequence to another. This way, the online
update is fast. In addition, the algorithm contains hard negative mining and
both short-term negatives and long-term positives, a multi-scale bounding box
regressor component trained only on highly confident frames. A more recent
and efficient implementation for MDNet achieves promising results on recent
benchmarks while running at 5 FPS.

2.3.3 Siamese Trackers

Siamese trackers rethink the correlation aspect of the tracking. To update
the model given the target bounding boxes is time-consuming. SiamFC [9] is
the first to pre-train the feature extractor similar to its final use (so that the
correlation will make sense) and tracks based on cross-correlation between a
template and a larger search area in the frame. All training is done offline,
and no adaptations are performed online. SiamRPN [94] introduces the Re-
gion Proposal Network in the pipeline and SiamMask [171] a new branch for
additional supervision, predicting the segmentation mask of the tracked object.
Since most operations are done offline, the siamese approaches are very fast.
Another important advantage is the easiness of building the training dataset,
composed of image pairs, sampled from single images and labels as positive
or negative.
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2.3.4 Joint Segmentation and Tracking

Several solutions propose segmentation-based tracking or joint segmentation
and tracking, each task enforcing the other. They are based on contour match-
ing [24, 146] and propagation [5] or probabilistic formulations like Conditional
Random Field (CRF) [98], CNN backbones common among the two tasks [172]
or graph-based approaches [13, 75]. Our proposed solution is based on clus-
tering using a graph representation of the video. It differs from previous ap-
proaches because we manage to find a good approximation of the problem
such that the pixel-level clustering in video becomes tractable and the tempo-
ral dimension is naturally integrated into the formulation, while also achieving
good state-of-the-art performance.

2.4 state-of-the-art methods
Next, I will briefly introduce some of the best approaches over the stan-

dard benchmarks in tracking (each new valuable solution reports results for
5-7 datasets).

siamban Siamese Box Adaptive Network for Visual Tracking [20] replaces
the need for multi-scale predictions or pre-defined anchor boxes for accurate
bounding box predictions by using the fully convolutional network properties.
The system predicts the object class and regresses the bounding box through
two parallel network heads.

Figure 7: SiamBAN [20] pipeline.

atom and prdimp ATOM [30] proposes a dedicated head for target estima-
tion and refinement, based on an IoU regressor that iteratively improves the
bounding box target prediction for each forward step. This learns to predict
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the overlap between the target object and an estimated bounding box. Different
from ATOM, PrDimp [33] formulates the uncertainty in the target estimation as
probabilistic regression and integrates it in the tracking pipeline from ATOM.

Figure 8: ATOM [30] and PrDimp [33] pipeline.

ltmu The main approach in long-term tracking is using offline trained Siamese
nets. Different from that, High-Performance Long-Term Tracking with Meta-
Updater [27] solution balances the importance of accommodating the appear-
ance changes in the target with the system’s robustness in this long-term
context. The proposed framework consists of a verifier, a SiamRPN-based
re-detector, the LTMU meta-updater, and a local online tracker that can be
replaced with a different one.

Figure 9: LTMU [27] pipeline.
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ocean Object-aware Anchor-free Tracking [198] identifies and tackles the
problem that the regression network in anchor-based methods is not trained for
anchor boxes with low overlap, making it hard to recover when reaching those
cases. The proposed solution fixes the imprecise bounding-box predictions and
learns an object-aware feature that enhances the overlap and contributes to the
target classification task.

Figure 10: Ocean [198] line.

2.5 other original approaches
I will continue this chapter by describing several interesting tracking ap-

proaches and directions that introduce original aspects compared with the rest
of the literature on tracking.

graph convolutional tracker Because of the real-time running constraints,
a wide variety of siamese trackers base their algorithm only on per frame de-
tection, ignoring the temporal context of the object. As a result, only the initial
template is used to match the tracked object in further video frames. To tackle
this spatio-temporal history of the target, GCT [50] proposes a graph of target
parts (robust to occlusions). Using this context, GCT combines with the current
context and learns an adaptive, attention-based graph, which is later used for
cross-correlation.
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meta-tracker Meta-learning seems a naturally occurring idea for object
tracking, since following the task formulation, the purpose in general tracking
is exactly to build a one-shot learner: given a new video, predict the first-frame
chosen object trajectory. Nevertheless, only recently has this approach started
to gain some traction in the community [128, 166, 27]. Meta-tracker [128] uses
a tracking-by-detection solution (MDNet) and learns to distinguish the target
objects from background. It enforces this by using label shuffling in training
(background with either 0 or 1 label), preventing it from collapsing in memo-
rizing only specific targets appearance from training data and label the rest as
background all the time.

visual tracking via adversarial learning VITAL [148] uses adversarial
learning to reduce the overfitting on a single frame, one of the most common
problems in tracking-by-detection setup. The generator proposes discrimina-
tive features in target, while the discriminator classifies the input patch as
target or not. This way, the generator, guided by the discriminator, will learn
to extract only spatial features that are part of the object (not the background
or other distractors). Usually, the problem in the adversarial setup is the nu-
merical stability and convergence of the solution. VITAL proposes an adapted
loss that accounts for negative-positive sample imbalance, adding a modulat-
ing factor inspired from the focal loss [99].

unsupervised deep tracking Using the time axis in the video as a su-
pervision signal was a highly explored direction in vision, recently reaching
competitive results. UDT [169] enforcing this with temporal cycles, assuming
that a forward trajectory should be similar to the backward one, starting from
the last bounding box of the target. Nevertheless, the approach is highly un-
stable and highly dependant on the training samples generation.

2.6 benchmarks

2.6.1 Classical datasets

otb-100 Object Tracking Benchmark [179] is one of the first video tracking
larger benchmarks, being widely used, becoming largely overfitted over time,
but a must-have reference in the experimental protocol. small, first,

overfitted
It contains 100 video

sequences (updated in 2015 from 50 sequences), with 59k frames. With a di-
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verse range of labels for 11 (per frame) attributes for difficult cases (motion
blur, scale variation, occlusion, low-resolution, background clutter, out of view,
etc.), OTB-100 is a classic benchmark.

vot16-20 VOT [79] is also one of the classics, coming with a different evalu-
ation protocol, compared with any other dataset. small, different

evaluation
protocol

When the tracker misses the
target, it is reset, re-initializing it with the ground-truth. Another difference is
that the final metrics are computed as a mean over sub-videos of different sizes.
For each tested tracker, the framework reports the expected average overlap, ac-
curacy, robustness, and speed. It contains only 60 sequences (with 21k frames)
and focuses on short-term videos (and long-term later on), that do not apply
particular pre-trained models of appearance. It comes with a semi-automatic
ground truth bounding box annotation methodology.

uav123 Videos captured from UAV flying at low-altitude are quite different
compared with the ones from other datasets. small, drone

filmed
This dataset [118] contains 123

sequences (and 113k frames) and focuses on long-term aerial tracking, having
very small tracking targets.

2.6.2 Newer datasets

trackingnet It is the first large-scale dataset for tracking, allowing deep
learning models to be trained on a video dataset rather than datasets for
object detection in images like before. largest,

leaderboard
TrackingNet contains 30K sequences

for training and 511 for testing ( 15 million frames), with labels available
through a leaderboard server. The target objects appear in diverse scenarios
for 27 classes, mainly covering persons, vehicles, animals, and several other ob-
jects. TrackingNet [120] was build by re-purposing YouTube-BoundingBoxes
Dataset [135].

got-10k Targeting large-scale Generic Object Tracking in the Wild, GOT-
10k [68] has 10k sequences (1.5 million frames) of real-world moving objects,
with manually labeled bounding boxes. large, short-term,

one-shot,
leaderboard

Different from all the others, its split
between train and test data provides a one-shot learning scenario, by having a
zero-overlapped between train and test target classes. It also has a leaderboard
server. The focus in this dataset is on short-term videos.
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lasot This is also a Large scale dataset for Single Object Tracking, with 70

balanced classes spread across 1400 videos and 3.5 million manually annotated
frames. large, long-termLaSOT [42] has also labels for 14 challenging cases for tracking. It is
mainly oriented towards long-term tracking, with an average video length of
2.5K frames, claiming that the performance of a tracker on this benchmark
better reflects its real-world application results.

nfs The Need for Speed dataset [49] is the first one for tracking that pro-
poses a higher frame rate (240 FPS, but it also has a 30 FPS variant). small, high frame

rate
There

are just 100 (long) videos (with 380K frames). The frames are also annotated
with difficult cases labels (like occlusion, background clutter, fast motion). This
dataset is relevant because it allows the tracker to explore and better analyze
the case of a real-time application with higher frame rate acquisition, involving
denser frames with smoother target movements.



3
T R A C K I N G W I T H
C O N S E N S U S W I T H I N A
S O C I E T Y O F C L A S S I F I E R S

One of the main challenges in tracking is to adapt to object appearance
changes over time, while avoiding drifting to background clutter. We address
this challenge by proposing a deep neural network architecture composed of
different parts, which functions as a society of tracking parts. The parts work
in conjunction according to a certain policy and learn from each other in a ro-
bust manner, using co-occurrence constraints that ensure robust inference and
learning. From a structural point of view, our network is composed of two
main pathways. One pathway is more conservative. It carefully monitors a
large set of simple tracker parts learned as linear filters over deep feature ac-
tivation maps. It assigns different roles to parts, while promoting the reliable
ones and removing the inconsistent ones. We learn these filters simultaneously
in an efficient way, with a single closed-form formulation for which we pro-
pose novel theoretical properties. The second pathway is more progressive.
It is learned completely online and thus it is able to better model object ap-
pearance changes. In order to adapt in a robust manner, it is learned only
on highly confident frames, which are decided using co-occurrences with the
first pathway. Thus, our system has the full benefit of two main approaches
in tracking. The larger set of simpler filter parts offers robustness, while the
full deep network learned online provides adaptability to change. As shown
in the experimental section, our approach achieves state of the art performance
on the challenging VOT17 benchmark, outperforming the existing published
methods both on the general EAO metric as well as in the number of fails by a
significant margin.

E. Burceanu, M. Leordeanu, Learning a Robust Society of Tracking Parts using Co-occurrence
Constraints, European Conference on Computer Vision - Visual Object Tracking Workshop
(ECCVW) 2018
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3.1 zooming out: tracking in the context of
the thesis

We focus in this chapter on building a tracker that is based on multiple and
diverse components, that manage to track the target object and its evolution
over time from multiple points of view. We briefly point out next the key
aspects introduced at the beginning of the thesis, putting this chapter in the
context.

• A. Space-time consistency: The society of tracking parts evolves over
time, by gradually promoting or downgrading each voting part, follow-
ing its co-occurrence of prediction history with consensus at the previous
points in time.

• B. The power of the consensus: Combine a pathway composed out of
weak tracking parts learned over deep features with a complex end-to-
end deep neural net pathway.

• C. Exploiting multiple intermediate representations: The object parts
are linear classifiers over pre-trained VGG-16 features which can be seen
as mid-level representations, while from the second pathway we use the
final prediction (a dense map score for the center of the target).

• D. A limited quantity of supervision: The only supervision we get is
through the pretrained VGG features for object classification in image, so
the solution is completely unsupervised from the tracking task point of
view.

• E. Experts: Making use of existing models: In this chapter, we use as
existing knowledge only pre-trained VGG-16 features.

3.2 context
Object tracking is one of the first and most fundamental problems that has

been addressed in computer vision. While it has attracted the interest of
many researchers over several decades of computer vision, it is far from being
solved [79, 80, 145, 107, 179]. The task is hard for many reasons. Difficulties
could come from severe changes in object appearance, presence of background
clutter and occlusions that might take place in the video. The only information
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given to the tracker is the bounding box of the object in the first frame. Thus,
without knowing in advance the properties of the target object, the tracking
algorithm must learn them on the fly. It must adapt correctly and make sure
it does not jump toward other objects in the background. That is why the
possibility of drifting to the background poses on of the main challenges in
tracking.

Our proposed model, at the conceptual level, is composed of a large group
of different tracking parts, functioning like a society, each with different roles
and powers over the final decisions. They learn from each other using certain
co-occurrence rules and are monitored according to their reliability. The way
they function together gives them robustness. From a structural point of view,
they are all classifiers within a large deep neural network structure, composed
of two pathways, namely the FilterParts and the ConvNetPart pathways (see
Figure 11). While the first insures robustness through the co-occurrence of a
large number of smaller tracker parts, the second pathway insures the ability
to adapt to subtle object changes. The ConvNetPart is fully trained online,
end-to-end, and uses as ground-truth high confidence tracker responses that
are decided together with the whole society of parts. We will refer to the
frames of high confident tracker responses as Highly Confident Frames (HCFs).
We provide more details in Section 3.4.2. Our idea of using as ground-truth
only a small set of high precision points is also related to the recent work on
unsupervised object discovery in video [59].

Our proposed approach is based on two key insights. One is the organization
of the whole tracker into a large group of different types of classifiers, simpler
and more complex, at different scales and with different levels of depth, as part
of a larger neural network structure, that make decisions together based on
mutual agreements. The second idea is the usage of co-occurrence constraints
as basis for ensuring robustness, both for online training of the overall tracker,
as well as for frame by frame inference.

relation to prior work. Existing trackers in the literature differ in terms
of type of target region, appearance model, mathematical formulation and op-
timization. Objects can be represented by boxes, ellipses [84], superpixels [173]
or blobs [54]. The appearance model can be described as one feature set over
the region or as an array of features, one for each part of the target [46, 142, 85].

In recent years, trackers based on discriminative correlation filters (DCF),
such as MOSSE [11] and KCF [63], achieved the best results on public bench-
marks. Newer models like Staple [8], CCOT [32] and ECO [29] provide con-
sistent improvements by adding to the DCF model different components, such
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as multi-channel feature maps and robust scale estimation[31]. CCOT, for in-
stance, proposes to learn continuous convolution parameters by optimizing a
function that results from transforming the original feature space into a contin-
uous one and applying onto it the continuous convolutions. While learning the
parameters continuously, at every frame, provides adaptability to the tracker,
overfitting to noise and drifting could pose a threat. In order to reduce overfit-
ting, ECO comes with a generative model over training samples. Nevertheless,
most recent tracking approaches still suffer from overfitting to background
noise, which causes tracker failure.

A common approach for top trackers in the recent literature is to model ob-
ject features with deep convolutional networks (CNNs). To address the issue of
robustness against background noise in the case of online training of CNNs, the
TCNN [121] algorithm, for example, maintains stability of appearance through
a tree structure of CNNs. MLDF [79] uses discriminative multi-level deep fea-
tures between foreground and background together with a Scale Prediction
Network. Another approach, MDNET [123] is used as starting point for many
CNN trackers. For instance, SSAT [79] uses segmentation to properly fit the
bounding box and builds a separate model to detect whether the target in the
frame is occluded or not. It uses this decision to consider frames for training
the shape segmentation model.

Another line of object tracking research is the development of part-based
models. They tend to be more resistant to appearance changes and occlu-
sion. Their multi-part nature gives them robustness against noisy appearance
changes in the video. In recent benchmarks however, they did not obtain the
top results. For instance, in VOT16 [79] challenge, while the number of part-
based trackers, such as DPCF [3], CMT [124], DPT [104], BDF [2], was relatively
high (25 %), the best one of the group, SHCT [39], is on the 14th place overall.
SHCT [39] is a complex system using a graph structure of the object that mod-
els higher order dependencies between object parts, over time. As it is the case
with deep convolutional networks, we believe complex systems are prone to
overfitting to background noise without a high precision way of selecting their
unsupervised online training frames.

Our proposed model combines the best of two worlds. On one hand it uses a
powerful deep convolutional network trained on high confidence frames, in or-
der to learn features that better capture and adapt to object appearance changes.
On the other hand, it uses the power of a large group of simpler classifiers
that are learned, monitored, added and replaced based on co-occurrence con-
straints. Our approach is validated by the very low failure rate of our tracker,
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relative to the competition on the VOT2017 benchmark (our 0.76 failure rate vs.
the next best one, 1.13).

our main contributions: 1) Our first contribution is the design of a tracker
as a dual-pathway network, with FilterParts and ConvNetPart pathways work-
ing in complementary ways within a robust society of tracking parts. Filter-
Parts is more robust to background noise and uses many different and rela-
tively simple trackers learned on top of deep feature activation maps. Con-
vNetPart is better capable to learn object appearance and adapt to its changes.
It employs a deep convolutional network that is learned end to end during
tracking using unsupervised high confidence frames for ground-truth.
2) Our second contribution is that every decision made for learning and in-
ference of the tracker is based on robust co-occurrence constraints. Through
co-occurrences over time we learn which FilterParts classifiers are reliable or
not. Thus we can change their roles and add new ones. Also, through co-
occurrences between the vote maps of the two pathways, we decide which
frames to choose for training the ConvNetPart path along the way. Last but
not least, through co-occurrences we decide the next object center by creating
a combined vote map from all reliable parts.
3) Our third contribution addresses a theoretical point, in Section 3.4.1. We
show that the efficient closed-form formulation for learning object parts simul-
taneously in a one sample vs. all fashion is equivalent to the more traditional,
but less efficient, balanced one vs. all formulation.

3.3 intuition and motivation
Visual tracking is about being able to adapt the current knowledge about an

object model to changes that take place continuously in the stream of video. It
is also about being stable and robust against background noise during frame
by frame inference. A tracking model composed of many parts, with differ-
ent degrees of complexity, could use the co-occurrences of their responses in
order to monitor over time, which parts are reliable and which are not. This
would provide stability. They could also be used to train the more complex
ConvNetPart pathway only on high-confidence frames on which the two path-
way responses strongly co-occur in the same region. Thus, they could provide
robust adaptability. Last but not least, by taking in consideration only where
sufficient parts votes co-occur for the object center, we could also achieve ro-
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Figure 11: STP overview: The tracker functions as a society of parts. It combines the
vote for center maps from all parts over two main pathways, FilterParts
and ConvNetPart. The two pathways are learned differently. The Filter-
Parts classifiers once learned are fixed individually but adapt as a group.
The ConvNetPart is trained end-to-end with back-propagation over unsu-
pervised tracker outputs from previous highly confident frames (HCFs).

bust frame to frame performance. We discuss each aspect in turn, next:

1) stability through steadiness. We consider a part to be reliable if it
has showed independently and frequently enough agreement in voting with
the majority of the other parts - a statistically robust measure. A certain part
is at the beginning monitored as a candidate part, and not used for deciding
the next tracker move. It is only after a candidate part’s vote for the object
center co-occurred frequently enough at the same location with the majority
vote, we promote the candidate to become a reliable part. From then on its
vote will participate in the final vote map. Tracking parts that display consis-
tent reliable behaviour over relatively long periods of time are promoted to the
status of gold members - they will permanently have the right to vote, they
cannot be downgraded and will not be monitored. In similar fashion, for the
ConvNetPart, we always keep the tracker output from the first frames (=20) in
video during the learning updates of the convolutional net. We further ensure
robustness by favoring current tracker prediction to be close to the previous
one. We use a tracker location uncertainty mask, centered around the previous
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center location.

2) robust adaptation. The tracker is able to continuously adapt by adding
candidate parts and removing unreliable ones. It also adapts by learning the
ConvNetPart on high confidence frames accumulated over time. For object
parts along the FilterParts pathway, gaining reliability, loosing it or becoming
a gold member, can happen only over time. It is the temporal buffer, when
tracking parts are monitored, which ensures both stability and the capacity to
adapt to new conditions in a robust way. In time, the second pathway has
access to a larger and larger set of reliable HCFs that are monitored through
co-occurrences between the voted tracker centers of the two pathways. By
training the net on larger sets of high quality frames we achieve both stability
and capacity to adapt to true object appearance changes. As mentioned pre-
viously, HCFs used as ground-truth comes from past frames where the center
given by the FilterParts alone co-occurred at the same location (within a very
small distance) with the one given by the ConvNetPart. In Figure 13 we show
why the distance between the two pathways is a good measure for frame confi-
dence - the strong correlation between the distance between the tracker and the
ground-truth and the distance between the centers voted along the two path-
ways is evident. In Figure 12 we also show qualitative results to demonstrate
how ConvNetPart and FilterParts could better work together in conjunction,
than separately.

3) robust frame to frame tracking. Each part produces a prediction
map for the object center. For the FilterParts pathway, an average vote map is
obtained from all reliable parts. That map is then added to the ConvNetPart
final vote map, with a strong weight given to the FilterParts pathway. This
is the final object center map in which the peak is chosen as the next tracker
location. It is thus only through the same strong co-occurrences of votes at a
single location that we robustly estimate the next move.

3.4 our approach
tracker structure. At the structural level, the Society of Tracking Parts
(STP) has two pathways: FilterParts and ConvNetPart pathways (Figure 11).
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Figure 12: Qualitative comparisons between FilterParts, ConvNetPart and the final
(STP) voting maps. Often, in complicated scenarios, the ConvNetPart vote
could be of better quality. There are also relatively simple cases where
the ConvNetPart activation map look bad, and we need the stability of the
FilterParts. The final vote map (STP), provides a more robust maximum.
The blue point represent the center of the final vote.

The combination of the two is presented in Alg. 1. The first pathway is formed
of smaller object parts that are classifiers represented by linear classifiers over
activation maps, from a pre-learned convolutional net. The ConvNetPart path-
way is a deep convolutional net, with the same structure as the first pathway
up to a given depth. Now we present the actual CNNs structures of the two
pathways:

The ConvNetPart is a fully convolutional network, where the first part (com-
mon as architecture with FilterParts features extractor) has 7 convolutional
layers, with 3x3 filters (each followed by relu) and 2 maxpooling layers (2x2).
It is inspired from the VGG architecture [144]. The second part, is composed of
4 convolutional layers with 3x3 filters, having the role to gradually reduce the
number of channels and computing the segmentation mask for object center
prediction. We could have tested with different, more recent architectures, but
in our experiments this architecture was strong enough.

tracking by co-occurrences of part votes: The tracker always chooses
as its next move at time t, the place (the center of the bounding box) lt+1 where
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Algorithm 1 - STP: Society of Tracking Parts
Input: frame1..m - video frames, bbox1 - first frame ground-truth bounding
box
Result: bbox2..m - tracking predictions

// Initialize the two pathways
1: filter_parts.init()
2: convnet_part.init()
3: while t < m do

// select search zone - crop around last prediction
4: cropt = crop(framet, bboxt−1, margin)

// track on each pathway
5: Ft = filter_parts.track(framet, cropt)
6: Ct = convnet_part.track(framet, cropt)

// combine voting maps
7: hcf_frame = is_agreement(Ft, Ct)
8: if hcf_frame then
9: Pt = (αFt + (1−α)Ct) ·Mc

10: else
11: Pt = Ft

12: bboxt = extract_bbox(framet, cropt, Pt)
// update trackers

13: filter_parts.update(framet, bboxt)
14: convnet_part.update(framet, bboxt, t, hcf_frame)
15: t← t+ 1

there is the largest accumulation of votes in Pt, its final object center prediction
map. For each filter part i, along the FilterParts pathway, there is an activation
map Fti, computed as the response of the classifier ci corresponding to that
part over the search region. The activation maps of filter parts are each shifted
with the part displacement from object center and added together to form the
overall Ft. Each displacement is fix and it represents the relative position to
the center of the object, when each part was selected as candidate. When all
filter parts are in strong agreement, all votes from Ft focus around a point.
For the second pathway, the object center prediction map Ct is the output of
the ConvNetPart network, given the same image crop input as to FilterParts.
After smoothing Ft with a small Gaussian filter, it is added to Ct. The final
prediction map Pt is then obtained by multiplying pixelwise the linear com-
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Algorithm 2 - STP: FilterParts

1: function track(framet, cropt)
2: filter_over_crop(framet, cropt, all_parts)
3: Ft = vote_parts(all_parts.reliable, all_parts.gold)
4: update_stats(all_parts)
5: return Ft
6: procedure update(framet, bboxt)
7: if not update_step then
8: return

// update candidate and reliable parts
9: for all parti in (all_parts.reliable, all_parts.candidate) do

10: freqi ← frequency_close_to_prediction(parti)
11: if freqi > p+ then
12: promote(parti)
13: else if freqi < p− then
14: discard(parti)

// budgeting
15: keep_top_k(all_parts.reliable, all_parts.gold)

// extract new candidates from current target prediction
16: proposed_parts = build_new_classifiers(framet, bboxt)
17: candidate_parts = filter_discriminatives(proposed_parts)

bination of Ct and Ft, with a center uncertainty mask Mc, around the center
in the previous frame. Mc is a circular soft mask, with exponential decay in
weights, as the distance from the previous center prediction increases. Thus,
Pt = (αFt + (1− α)Ct) ·Mc, where · denotes pixelwise multiplication. Mc en-
courages small center movements at the expense of large, sharp, abrupt ones.
The maximum in Pt is chosen as the next center location lt+1. We present the
steps for FilterParts pathway in Alg. 2.

3.4.1 Learning along the FilterParts pathway

STP chooses in the FilterParts update phase new parts to add as candidates.
They are classifiers, of different sizes and locations, represented as linear filters
over activation maps of deep features. To each part it corresponds a patch,
within the tracker’s main bounding box. Only patch classifiers that are highly
discriminative from the rest are selected. One is considered discriminative if



3.4 our approach 35

the ratio between the response on its own corresponding patch (the positive
patch) and the maximum response over negatives is larger than a threshold
td. Positive patches are selected from the inside of the bounding box, while
(hard) negatives are selected as patches from outside regions with high den-
sity of edges. We sample patches from a dense grid (2 pixels stride) of 3 sizes.
The small ones will see local appearance and the larger ones will contain some
context. A point in grid is covered only by one selected discriminative patch,
at one size. The smaller ones have priority and we search the next size for the
patch centered in the grid point only if the smaller patch is not discriminative
enough. The object box is completely covered when each pixel is covered by
any given patch. A simple budgeting mechanism is added, in order to limit
the speed impact. When too many parts of a certain patch size become reliable
> Nmax, we remove the new reliable ones which are most similar to older parts,
based on simple dot product similarity for the corresponding classifiers.

mathematical formulation for filter parts classifiers. Preliminary
version of FilterParts computation was previously presented in [14]. For a
given feature type let di ∈ R1×k be the i-th descriptor, with k real elements,
corresponding to a patch window at a certain scale and location relative to the
object bounding box. In our case, the descriptor di is a vector version of the
specific patch concatenated over all activation map channels over the consid-
ered layers of depth in the FilterParts pathway. Our formulation is general and
does not depend on a specific level of depth - features could as well be simple
pixel values of any image channel. Let then D be the data matrix, formed by
putting all descriptors in the image one row below the other. Given n as the
total number of descriptors (parts), let yi ∈ Rn be the label array for the i-th
descriptor, with yi(i) = 1 and yi(j) = 0 for j 6= i.

We learn the optimal linear classifier ci that separates di from the rest of the
patches, according to a regularized linear least squares cost, which is both fast
and accurate. Classifier ci minimizes the following cost ( [119] Ch. 7.5):

min
1

n
‖Dci − yi‖2 + λc>i ci. (3)

In classification tasks the number of positives and negatives should be prop-
erly balanced, according to their prior distributions and the specific classifier
used. Different proportions usually lead to different classifiers. In linear least
squares formulations weighting differently the data samples could balance
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learning.

learning with one sample versus all. The idea of training one classifier
for a single positively labeled data sample has been successfully used before,
for example, in the context of training SVMs [108]. Normally, when using
very few positive samples for training a ridge regression classifier, weighting
is applied to balance the data. Otherwise the classifier might learn to miss
positive samples entirely. Here we show that it is possible, when a single
positive sample is used, to obtain the same result with a single positive sample
without weighting, as if balancing was applied. We show a novel result, that
while the magnitude of the corresponding classifier vector is different for the
single positive data sample case, its direction remains unchanged w.r.t. the
balanced case.

theorem 1. For any positive weight wi given to the positive i-th sample,
when the negative labels considered are 0 and the positive label is 1 and all
negatives have the same weight 1, the solution vector to the weighted least
squares version of Eq. 3 will have the same direction (it might differ only in
magnitude). In other words, it is invariant under L2 normalization.

proof. Let ci be the solution to Eq. 3. At the optimum the gradient vanishes,
thus the solution respects the following equality (D>D + λIk)ci = D>yi. Since
yi(i) = 1 and yi(j) = 0 for j 6= i, it follows that (D>D + λIk)ci = di. Since the
problem is convex, with a unique optimum, a point that obeys such an equality
must be the solution. In the weighted case, a diagonal weight n×n matrix W
is defined, with different weights on the diagonal wj = W(j, j), one for each
data sample. In that case, the objective cost optimization in Eq. 3 becomes:

min
1

n
‖W

1
2 (Dci − yi)‖2 + λc>i ci. (4)

We consider when all negative samples have weight 1 and the positive one is
given wi. Now we show that for any wi, if ci is an optimum of Eq. 3 then there
is a real number q such that qci is the solution of the weighted case. The scalar
q exists if it satisfies (D>D + did>i (wi − 1) + λIk)qci = widi. And, indeed, it
can be verified that q = wi

1+(wi−1)(d>
i ci)

satisfies the required equality.

detailed proof It is easy to obtain the closed form solution for ci, from
linear ridge regression formulation ([119] Ch. 7.5), by minimizing the convex
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cost 1
n‖Dci − yi‖+ λc>i ci, we get Eq. 5. It results the well known solution by

inverting the positive definite matrix D>D + λIk.

(D>D + λIk)ci = D>yi (5)

In "one vs all" context, we choose y>i =
[
0 0 ... 1 ... 0 0

]
, with 1 only

on the ith position. So, the multiplication with yi selects a column form D:
D>yi = di. Eq. 5 becomes:

(D>D + λIk)ci = di (6)

When building classifiers, the classes should be balanced as numbers of en-
tries. This ensures that the comparison between the activation scores for two
different classifiers is valid. In "one vs all", usually the positive class has fewer
instances than the negative class. So we needed to use a weighted solution for
linear ridge regression [67], in order to build a balanced classifier for our "part
of the object vs others/context" classifiers.

We prove that for a specific form of the weights, the weighting can be applied
after computing the simple version (closed form linear regression, Eq. 6). This
is very important for our algorithm, because for the simple ridge regression
we need to compute only one matrix inverse for all classifiers in one step, one
matrix that all of them will share: (D>D+ λIk)−1 from Eq. 6. For the weighted
case, the closed form solution (as in [67]) would be different from classifier to
classifier:

(D>WiD + λIk)„i = D>Wiyi (7)

The weight matrix for a classifier Wi has the following form:

Wi = In +



0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

...
0 0 ... wi ... 0 0

...
0 0 0 ... 0 0 0


= In + Wsparsei (8)

with 0s and wi only on ith position on the diagonal, i being the index of the
positive patch in data matrix, D.
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Replacing Eq.8 in Eq.7, and observing that D>Wsparsei = wi[0|di|0], the right
hand side becomes: D>Wiyi = D>(In + Wsparsei)yi = D>yi +wi[0|di|0]yi =
di +widi. So, for the right term we get:

D>Wiyi = (1+wi)di (9)

By doing the same operations on the left term: D>WiD = D>(In+Wsparsei)D =

D>D +wi[0|di|0]D = D>D +widid>i , the Eq. 7 can be rewritten:

(D>D +widid>i + λIk)„i = (1+wi)di (10)

Let θi = qici, where ci is the solution for linear ridge regression (Eq. 6) and
qi ∈ R. Then Eq. 10 becomes: (D>D +widid>i + λIk)qici = (1+wi)di. From
Eq. 6, by simplifying terms we obtain qidi + qiwidid>i ci = (1+wi)di. Then,

by multiplying at left with d>
i

||di||
2
2

, we get:

qi + qiwid>i ci = (1+wi) (11)

So, the solution for qi is (wi is n− 1, because in "one vs all" classification, all
elements in D are negative samples, except for one, the ith):

qi =
(1+wi)

1+wid>i ci
=

n

1+ (n− 1)d>i ci
(12)

Therefore, we proved that if ci is the unique solution of linear ridge regres-
sion (since D>D+λIk is always invertible, the solution in Eq. 9 is unique), then
qici (qi from Eq. 12) is the unique solution of Eq. 6 (D>D +widid>i + λIk is
always invertible, since it is also positive definite).

efficient multi-class filter learning. The fact that the classifier vector
direction is invariant under different weighting of the positive sample suggests
that training with a single positive sample will provide a robust and stable
separator. The classifier can be re-scaled to obtain values close to 1 for the
positive samples. Theorem 1 also indicates that we could reliably compute
filter classifiers for all positive patches in the bounding box at once, by using
a single data matrix D. We form the target output matrix Y, with one target
labels column yi for each corresponding sample di. Note that Y is, in fact,
the n× n In identity matrix. We now write the multi-class case of the ridge
regression model and finally obtain the matrix of one versus all classifiers, with
one column classifier for each tracking part: C = (D>D+ λIk)−1D>. Note that
C is a regularized pseudo-inverse of D. D contains one patch descriptor per
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line. In our case, the descriptor length is larger than the number of positive and
negative samples, so we use the Matrix Inversion Lemma [119](Ch. 14.4.3.2)
and compute C in an equivalent form:

C = D>(DD> + λIn)−1. (13)

Now the matrix to be inverted is significantly smaller (n×n instead of k× k).

matrix inversion lemma Consider a general partitioned matrix M =

[
E F
G H

]
,

with E and H invertible (Matrix Inversion Lemma [119], Ch. 4.3.4.2). Then the
following relation takes place:

(E − FH−1G)−1FH−1 = E−1F(H − GE−1F)−1 (14)

By making the replacement: E = λIk, H = In, F = D>, G = −D (E and H are
invertible) and rearranging the terms, we obtain [119] (Ch. 14.4.3.2):

(D>D + λIk)−1D> = D>(DD> + λIn)−1 (15)

We observe that the first term in Eq. 15 is part of the closed form solution for
the linear regression (without labels yi). So, we can replace it with the one
easier to compute. Since the bottleneck here is inverting the positive definite
matrix D>D + λIk or DD> + λIn, we will choose the easiest to invert. And
this is the smaller one. In our case, n is the number of patches, and k is the
number of features in each patch (equal to the patch area in feature space ×
number of channels, which is 256). A roughly approximation for n is 500 and
approximations for k are 6400 ≈ 5× 5× 256, 74000 ≈ 17× 17× 256 and bigger
for patches of bounding box size.

The second solution for computing the classifier is inverting a matrix two
orders of magnitude smaller (as number of elements) than the first solution.
So we choose the second part of Eq. 15 for the closed form solution.

reliability states. The reliability of a filter part i is estimated as the fre-
quency fi at which the maximum activation of a given part is in the neighbor-
hood of the maximum in the final activation Pt where the next tracker center
lt+1 is chosen. If a part is selected for the first time, it is considered a candi-
date part. Every U frames, the tracker measures the reliability of a given part,
and promotes parts with a reliability larger than a threshold fi > p+, from
candidate state (C) to reliable state (R) and from reliable (R) to gold (G). Parts
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Algorithm 3 - STP: ConvNetPart

1: function track(framet, cropt)
2: Ct = cnn.forward(framet, cropt)
3: return Ct
4: procedure update(framet, bboxt, t, hcf_frame)
5: if t < FIRST_FRAMES then
6: gold_trainset.add(framet, bboxt)
7: else if hcf_frame then
8: trainset.add(framet, bboxt)
9: if not update_step then

10: return
// budgeting

11: trainset.keep_max_samples(Nmax)
// update model

12: finetune_cnn(trainset)

that do not pass the test fi 6 p− are removed, except for gold ones which are
permanent.

bounding box estimation per frame We compute the bounding boxes
for each frame in a simple manner. We considered all parts from the FilterParts
pathway which voted and agreed on the tracker center for the current frame.
We used their activation maps (original locations, not displaced relative to the
object center) in order to estimate an affine transformation of the object and
used the transformed bounding box as our tracker prediction.

3.4.2 Learning along the ConvNetPart Pathway

The end output of the ConvNetPart pathway is an object center predic-
tion map, of the same size as the one produced along the FilterParts path-
way. Different from FilterParts, the second pathway has a deeper architec-
ture and a stronger representation power, being trained end-to-end with back-
propagation along the video sequence. First, we train this net for the first 20

frames, using as ground-truth the FilterParts center prediction (expected to
be highly accurate). Afterwards, the ConvNetPart is considered to be reliable
part and it will contribute, through its center prediction, to the final tracker
prediction.
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From then on, the ConvNetPart will be fine-tuned using as ground-truth the
final tracker predictions on highly confident frames (HCFs). This will ensure
that we keep the object appearance up to date, and we won’t drift in cases
of local occlusion or distractors. We present the steps from the ConvNetPart
pathway in Alg. 3. Results from Table 4 supports our decision.

selecting training samples from highly confident frames. We call
HCF (Highly Confident Frame) a frame on which the distance between Filter-
Parts and ConvNetPart votes for object center prediction is very small. When
the two pathways vote almost on the same center location, we have high con-
fidence that the vote is correct. In order to balance efficiently the number of
updates with keeping track of object appearance changes, we do the following.
First, we accumulate frames of high confidence and second, at regular intervals,
we fine tune the network using the accumulated frames. The assumption we
made is that on HCFs, our tracker is closer to ground-truth than in the other
frames. This is confirmed in Figure 13. 11% of all frames are HCFs. More
extensive tests for validating HCF usefulness are described in Section 3.5.
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Figure 13: The plot shows the expected distance to ground-truth for a given distance
between the centers predicted by the two pathways. As seen, the correlation
is strong and it is therefore used for selecting in an unsupervised way
high confidence frames. We choose HCFs from the first 11% percentile.
Experiments run on VOT16 dataset.

technical details for training the convnetpart. For each training
frame, we use as input an image crop around the object (Figure 14). The
ground-truth is given as a segmentation map of the same size, with a circle
stamp in the center. We increase robustness and generalization by randomly
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shifting the image along with its ground-truth - thus we also augment the data
by providing two such randomly shifted pairs, per frame. We use the Adam
optimizer, with learning rate lr, from Pytorch [97], at first for k epochs on the
first N(=20) frames, then on k epochs on each update, after each U frames. In
the update step, we always use as samples the last N HCFs and the first N
frames - thus we combine the new changes with the initial appearance. The

training loss was a simple MSE =
∑

(xi−yi)
2

n . Note that we did not experiment
with many architectures and loss functions, which might have further improve
performance.

parameters. We use the following parameters values in all our experiments
from Section 3.5: α = 0.6, U = 10 frames, td = 1.4, p+ = 0.2, p− = 0.1, k = 10

epochs, N = 20 frames, lr = 1e− 5 and Nmax = 200 parts for each scale size.
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Figure 14: The voting maps for FilterParts, ConvNetPart and the final (STP), respec-
tively. We also show the qualitative view of training samples selection for
ConvNetPart. Frame is not Highly Confident if pathways votes centers are
distanced. Best seen in colors.
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3.5 experimental analysis
results on vot17 and vot16 benchmarks. We tested our tracker on the
top visual object tracking benchmarks, VOT17 [80] and VOT16 [79]. VOT16

contains 60 video sequences, containing many difficult cases of occlusion, illu-
mination change, motion change, size change and camera motion. The VOT17

dataset replaces sequences from VOT16 that were solved by most trackers with
new and more difficult ones. For computing the final EAO evaluation score,
VOT setup is re-initializing the tracker when it completely misses the target.

In Table 1 we present the results after running our tracker through the VOT
toolkit. We compared our method against top published tracking methods:
ECO [29], CCOT [32], CFWCR [62], Staple [8], ASMS [165], EBT [202], CCCT
[19], CSRDCF [106], MCPF [197], ANT [18], some with reported results on
both benchmarks. Our STP outperforms the current state of the art methods
on VOT17, and is in the top three on VOT16. Note that we used the exact same
set of parameters on all videos from both VOT17 and VOT16. What distin-
guishes our tracker the most from the rest is the much lower failure rate (0.76

vs. second best 1.13, on VOT17). We think this is due to the robustness gained
by the use of co-occurrence constraints in all aspects of learning and inference,
and the dual-pathway structure, with each pathway having complementary
advantages.

Next we show how each design choice influenced the strong performance of
our tracker.

combining the filterparts and convnetpart pathways. In Table 2

we test the effect of combining the two pathways on the overall tracker. Each
pathway is let by itself to guide the tracker. In the "FilterParts only" line, we
have results where the first pathway becomes the tracker, with no influence
from ConvNetPart (α = 1). On the second we show the opposite case, when
the tracker is influenced only by ConvNetPart (α = 0). In that case the Con-
vNetPart is trained on the first 20 frames, then continuously updated on its
own output, with no influence from the FilterParts pathway.

In general, the FilterParts pathway is more robust and resistant to drifting
because it incorporates new information slower, after validating the candidates
in time. It is also based on stronger pre-trained features on ImageNet [34]. It is
more stable (lower failure rate) but less capable of learning about object appear-
ance (lower accuracy, as IOU w.r.t ground-truth). The ConvNetPart pathway is
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Tracker
Dataset VOT17 [80] VOT16 [79]

EAO R A EAO R A

STP (ours) 0.309 0.765 0.44 0.361 0.47 0.48

CFWCR [62] 0.303 1.2 0.48 0.39 0.81 0.58

ECO [29] 0.28 1.13 0.48 0.374 0.72 0.54

CCOT [32] 0.267 1.31 0.49 0.331 0.85 0.52

Staple [8] 0.169 2.5 0.53 0.295 1.35 0.54

ASMS [165] 0.169 2.23 0.494 0.212 1.925 0.503

CCCT [19] - - - 0.223 1.83 0.442

EBT [202] - - - 0.291 0.9 0.44

CSRDCF [106] 0.256 1.368 0.491 - - -

MCPF [197] 0.248 1.548 0.510 - - -

ANT [18] 0.168 2.16 0.464 - - -
Table 1: Top published trackers in terms of Expected Average Overlap (EAO), Robust-

ness or Failure rate (R) and Accuracy (A), on VOT17 [80] and VOT16 [79]
benchmarks. With red is marked the first result, blue is for the second and
green for the third. Our tracker achieves state of the art performances on
VOT17 [80] in terms of EAO and the 3

rd score on VOT16 [79]. Our failure
rate is the best by large margins on both datasets (42% and 67%). Our overlap
score is lower as we did not explicitly learn object shape or mask, but focus
instead on its center. Note that we obtained the results with the exact same
tracker and parameters for both VOT17 and VOT16. We will make our code
available.

deeper and more powerful, but as it is continuously trained on its own tracker
output it is prone to overfitting to background noise, resulting in many failures.

When using both components, the two pathways work in conjunction and
learn from each other using their outputs’ co-occurrence constraints. The
deeper pathway (ConvNetPart) is learning from the less flexible but more ro-
bust pathway (FilterParts). The numbers confirm our intuition and show that
the two paths work in complementary, each bringing important value to the fi-
nal tracker. The boost in performance after combining them is truly significant.

using different part roles in filterparts pathway. We also tested
with the case when all filters have one single role. Instead of considering



3.5 experimental analysis 45

Version
Dataset VOT17 VOT16

EAO R A EAO R A

FilterParts only 0.25 0.99 0.42 0.306 0.80 0.44

ConvNetPart only 0.205 2.09 0.43 0.265 1.53 0.46

Combined 0.309 0.765 0.44 0.361 0.47 0.48
Table 2: In "FilterParts only" experiment, the second pathway is not used at all. In

"ConvNetPart only" experiment, we use the FilterParts pathway only for the
first 20 frames, to initialize the network, and not use it afterwards. In the
absence of high confidence frames selection, the ConvNetPart is trained on
each frame, using its own predictions as ground-truth.

candidates, reliable and gold parts, which ensure stability over time, now all
parts added over the sequence have the right to vote at any time. In Table 3

we see that the impact of multiple roles for filter parts, depending on their
validation in time is high, bringing a 5% increase in terms of EAO, comparing
to the basic one role for all version.

Version
Dataset VOT17 VOT16

EAO R A EAO R A

One role 0.262 0.99 0.44 0.31 0.715 0.47

All roles 0.309 0.765 0.44 0.361 0.47 0.48
Table 3: Impact of different part roles used in FilterParts pathway. Considering roles

based on parts credibility over time (candidate, reliable, gold), which is mea-
sured using spatial and temporal co-occurrences, is of great benefit to the
tracker. It brings an advantage of 5% in EAO over the vanilla, "one role for
all" case.

learning with highly confident frames on convnetpart pathway.
In order to better appreciate the value of HCFs in training the ConvNetPart,
we have tested it against the cases of training on all frames (all frames are good
for training) and that of training only on the first 20 frames (no frame is good,
except for the first 20 when the ConvNetPart is initialized). As we can see in
Table 4, the "Full continuous update" regime on all frames is worst or at most
similar in performance with "No update" at all. This shows that the model can
overfit very quickly, immediately resulting in drifting (high failure rate). The
idea to learn only from Highly Confident Frames is of solid value, bringing
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a 2% improvement in the final metric EAO, and a large cut off in failure rate.
Even when we randomly select frames to be HCFs, of the same number as in
the case of the true HCF measure, we again obtained the same drop of 2% in
performance. These results, along with the statistical correlation between HCF
and the ground-truth presented previously in Figure 13 validate experimen-
tally the value of considering only a smaller set of high precision frames for
training, even when that set might be just a small portion of all high quality
frames.

Version
Dataset VOT17 VOT16

EAO R A EAO R A

No update 0.28 0.95 0.43 0.34 0.7 0.48

Full update 0.284 0.92 0.44 0.327 0.66 0.46

HCFs update 0.309 0.765 0.44 0.361 0.47 0.48
Table 4: Comparison in performance on VOT17 and VOT16, between updating the

ConvNetPart only on Highly Confident Frames (HCF update), not updating
it at all (No update), or updating it on every frame (Full update). We mention
that in all our experiments we used the top 11% past frames, in confidence
score, to perform training at a given time.

speed. The speed of FilterParts pathway is on average 30 fps on GTX TITAN
X, for a maximum of 600 filter parts. The ConvNetPart comes with a significant
time penalty only during learning updates. The tracker update is happening
once on 10 frames, but the ConvNetPart is updating only when there are new
HCFs in the queue. 11% of the frames are considered HCFs and they tend to
be grouped near portions of the video where the confidence is very high. A
full update takes 4 seconds and on average happens in 5% of the frames. So
the STP average speed is of 4 fps on GPU.

3.6 conclusion
We have proposed a deep neural network system for object tracking that

functions as a society of tracking parts. Our tracker has two main deep path-
ways, one that is less flexible but more robust, and the second that is less robust
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but more capable of adapting to complex changes in object appearance. Each
part uses co-occurrences constraints in order to keep its robustness high over
time, while allowing some degree of adaptability. The two pathways are also
combined in a robust manner, by joining their vote maps and picking the loca-
tions where their votes co-occurred the most. From a technical point of view,
the novelty aspects of our system include the way the classifiers in the Fil-
terParts pathway are learned and ascribed different roles, depending on their
degree of reliability. These roles relate the idea of a society, where some parts
are candidates that are being monitored, others are reliable voters, where those
who proved their reliability long enough become gold members. Another nov-
elty aspect which brings an important value in practice, is the way we train
the ConvNetPart on high confidence frames only, by selecting for training only
those frames where the two different and complementary pathways, agree. We
also provide a novel theoretical result, to the best of our knowledge, we proves
that the efficient one sample vs. all strategy employed for learning the classi-
fiers in the FilterParts path, is stable and gives basically the same result as in
the balanced case. In experiments we provide solid validation of our design
choices and show state of the art performance on VOT17 and top three on
VOT16, while staying on top on both in terms of failure rate, by a significant
margin.

Next in the thesis I will analyze how segmentation can enhance the perfor-
mance of the tracking task. First we will approach only the video segmentation
task in the next chapter, and next we will combine it with tracking to see how
tracking can benefit from having a more refined intermediary representation,
like the object segmentation mask.



4
S PA C E -T I M E S P E C T R A L
S E G M E N TAT I O N TO W A R D S
C O N S E N S U S

We pose video object segmentation as spectral graph clustering in space and
time, with one graph node for each pixel and edges forming local space-time
neighborhoods. We claim that the strongest cluster in the video graph repre-
sents the salient object. We compute this cluster using a novel and fast 3D
filtering technique that finds the spectral solution as the principal eigenvector
of the graph’s adjacency matrix. We also show how to learn efficiently spectral
clustering over multiple input feature channels. The method reduces to a set
of specific 3D convolutions in the space-time feature channels volume, which
is equivalent to computing the principal eigenvector without building the ad-
jacency matrix explicitly. This key property allows us to have fast parallel
implementation on GPU, orders of magnitude faster than classical approaches
for computing the eigenvector. Our motivation for a spectral space-time clus-
tering approach, unique in video semantic segmentation literature, is that such
clustering is dedicated to preserving object consistency over time, which we
evaluate using our novel segmentation consistency measure. In extensive ex-
periments we show significant improvements over top methods, as well as over
powerful ensembles that combine such methods, on the challenging DAVIS-
2016 and SegTrackv2 datasets.

4.1 zooming out: segmentation in the context
of the thesis

We noticed in the previous chapter on tracking the quantity of noise that
step by step leads the tracker into drifting. Thus we emphasize the need of
having a more refined representation, like the segmentation of the object. So,
in this chapter, we approach the object segmentation task in video. More, we

E. Burceanu, M. Leordeanu, A 3D Convolutional Approach to Spectral Object Segmentation in
Space and Time, The International Joint Conferences on Artificial Intelligence (IJCAI) 2020
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take advantage here of having the object contour as input and refine it based
on space and time natural consistencies discovered through clustering over the
video volume of pixels. We analyze next this chapter, following the key aspects
introduced at the beginning of the thesis:

• A. Space-time consistency: This approach formulates the segmentation
problem in video as clustering in the video volume, where neighbours
are both spatial and temporal. Our spectral solution over this 3D volume
naturally exploits the connections between dimensions.

• B. The power of the consensus: In the first part of this work, the con-
sensus can be seen at the level of neighbourhoods, where each pixel is
iteratively updated using its space-time neighbours. The second part
combines many top segmentation methods, each as a different channel in
our iterative spectral approach.

• C. Exploiting multiple intermediate representations: -

• D. A limited quantity of supervision: The basic SFSeg algorithm is
purely unsupervised. In the second part, we use supervision to learn
how to combine multiple channels in the input.

• E. Experts: Making use of existing models: We use expert models as
input in SFSeg++, our extended algorithm, to better analyze the poten-
tial increase in performance of our approach when compared with other
ensemble methods.

4.2 context
Elements from a video are interconnected in space and time and have an

intrinsic graph structure (Fig. 15). Most existing approaches use higher-level
components, such as objects, super-pixels or features, at a significantly lower
resolution. Considering the graph structure in space and time, explicitly at the
dense pixel-level, is an extremely expensive problem.

Our proposed solution to video object segmentation is based on transform-
ing an expensive eigenvalue problem inspired by spectral clustering, into 3D
convolutions on the space-time volume, which makes our algorithm fast, while
keeping the properties of spectral clustering. We first refine the output of a sin-
gle existing method (SFSeg), next we show how to learn the space-time clus-
tering in the context of multiple feature input channels (SFSeg++). This allows
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learning of powerful ensembles in combination with our spectral clustering
approach, to obtain state-of-the-art performance on challenging datasets by a
significant margin.

Most state-of-the-art algorithms for this task do not use the time constraint,
and when they do, they take little advantage of it. Time plays a fundamen-
tal factor in how objects move and change in the world, but computer vision
does not yet exploit it sufficiently. Consequently, the segmentation outputs of
current state-of-the-art methods is not always consistent over time. Our work
comes to address precisely this aspect and our contribution is demonstrated
through solid experiments on DAVIS-2016 and SegTrackv2 datasets, on which
we improve over such state-of-the-art solutions.

We first demonstrate theoretically and through extensive experiments that
the eigenvector of the space-time graph’s adjacency matrix is a good solution
for salient object segmentation and can be computed fast with a special set of
3D convolutions. We prove theoretically and in practice that SFSeg reaches
the same solution as standard routines for eigenvector computation. We also
show in experiments that the values in the final eigenvector, with one element
per video pixel, confirm the spectral clustering assumption and provide an
improved soft-segmentation of the main object.

Next, we present the full SFSeg++, an augmented version of SFSeg with
learning capability. We show how to learn to combine multiple input channels
in conjunction with the 3D spectral filtering, to significantly improve over the
initial SFSeg version and also over different types of ensembles that combine
the output of existing state-of-the-art methods.

One of the key properties of our filtering-based optimization is that it con-
verges to the eigenvector of the graph of pixels in space and time. The seg-
mentation map obtained is spatio-temporally consistent, with a smooth and
coherent transition between frames. That is the main reason why the pro-
posed method is best suited for improving or refining the output of any other
method, since most existing algorithms do not take full advantage of the space-
time consistency. Therefore, when our method is applied on top of the output
of another, the noise coming from other objects is removed and missing parts
of the object are added back. Through multiple iterations, the relevant informa-
tion is propagated step by step to farther away neighbourhoods in space and
time, acting like a diffusion. As experiments show, the improvement brought
by our algorithm is consistent and reliable - it takes place almost every time
and with the same set of hyper-parameters.

The main contributions of this work are the following:
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Figure 15: SFSeg++: Our method learns to combine multiple input feature channels
(e.g. learnable ensemble of other methods’ outputs, as separate channels)
and compute the principle eigenvector of the space-time graph with a spe-
cial set of 3D convolutions very fast. The combination weights for the
different channels are learned with gradient descent, by propagating the
gradient of the loss through the full spectral algorithm. In experiments
we start from the output of top published segmentation methods and use
their combined output volume, in space and time, as graph nodes for our
spectral approach, which then computes the final segmentation frame by
frame. Please note that this method is general and could learn to combine
any type of input feature channels, as tests show. Also note that SFSeg++
permits full end-to-end learning, in the case when the deep networks and
systems that provide the input feature channels are fully differentiable.

1. We formulate the instance segmentation problem in video as an eigen-
value problem on the adjacency matrix of the pixels’ graph in space and
time.

2. We provide a fast optimization algorithm with a special set of 3D filter-
ing operations, which computes the required eigenvector (representing
the desired segmentation) without explicitly creating or using the huge
graph’s adjacency matrix, in which each pixel in space and time has an
associated node.

3. Our SFSeg++ algorithm becomes fully learnable over multiple input chan-
nels. In experiments we show that SFSeg++, learning over all segmenta-
tion methods available for training on DAVIS 2016, brings in comple-
mentary information and significantly improves over the input. SFSeg++
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outperforms on the current single best state-of-the art by 4.2% and the
ensemble of top 15 published methods by 3.1%.

4. We introduce TCONT, a novel temporal consistency metric for segmenta-
tion in video, which looks at the temporal continuity of the predictions in
video and their stability with respect to the motion field of the object (as
estimated by optical flow). The experiments show that our SFSeg++ algo-
rithm is significantly more temporally consistent with respect to ground-
truth, when compared to single or ensemble state-of-the-art approaches.

4.3 relation to prior work
Most state-of-the-art methods for video object segmentation use CNNs ar-

chitectures, pre-trained for object segmentation on other large image datasets.
They have a strong image-based backbone and are not designed from scratch
with both space and time dimensions in mind. Many solutions [76, 157, 22]
adapt image segmentation methods by adding an additional branch to the ar-
chitecture for incorporating the time axis: motion branch (previous frames or
optical flow) or previous masks branch (for mask propagation). Other meth-
ods are based on one-shot learning strategies and fine-tune the model on the
first video frame, followed by some post-processing refinement [163, 109]. Ap-
proaches derived from OSVOS [110] do not take the time axis into account.

improving along the temporal dimension. Our method comes to bet-
ter address the natural space-time relationship, which is why it is always ef-
fective when combined with frame-based segmentation algorithms. The need
for video consistency was previously identified and approached. A temporal
stability metric was proposed in DAVIS-2016 [130] but in less than a year it was
withdrawn [133], since the metric was hardly influenced by occlusion, leading
to irrelevant comparisons. Temporal stability was based on the Dynamic Time
Warping problem, looking to match, between two frames, pixels from the con-
tour of the object, such that the distance between Shape Context Descriptor
from the two shapes is minimized. In contrast, our TCONT metric for tem-
poral consistency is based on checking the alignment of nearby predictions
using direct and reverse optical flow, and it is not affected by occlusions. Ex-
periments in Sec. 4.6.4 prove that our approach brings a complementary value
along the time axis, in solving object segmentation in video while improving
the temporal consistency of the result.
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relation to different graph representations. Graph methods are
suitable for segmentation and can have different representations, where the
nodes can be pixels, super-pixels, voxels, image or video regions [70]. While
there are works on directed graphs [160, 189], edges are usually undirected,
modeled by symmetric similarity functions. The choice of the representation
influences both accuracy and runtime. Specifically, pixel-level representations
are computationally extremely expensive, making the problem intractable for
high resolution videos. Our fast solution implicitly uses a pixel-level graph
representation: we make a first-order Taylor approximation of the Gaussian
kernel (usually used for pairwise affinities) and rewrite it as a sequence of 3D
convolutions in the video directly. Thus, we get the desired outcome without
explicitly working with the graph. We describe the technical novelties in detail
in Sec. 4.4.

relation to spectral clustering. Computing eigenvectors of matrices
extracted from data is a classic approach for clustering. There are several
choices in the literature for choosing those matrices, the most popular being the
Laplacian matrix [125], normalized [141] or unnormalized. Other methods use
the random walk matrix [113, 70] or directly the unnormalized adjacency ma-
trix [90]. Most methods are based on finding the eigenvectors corresponding
to the smallest eigenvalues, while others, including ours, require the leading
eigenvectors. Graph Cuts are a popular class of spectral clustering algorithms,
with many variants, like normalized [141], average [140], min-max [35], mean
cut [174] and topological cut [192].

relation to crfs. Discriminative graphical models such Conditional Ran-
dom Fields [86] and Discriminative Random Fields [83] are often applied over
the segmentation of images and videos (denseCRF [82]). Different from the
more classical Markov Random Fields (MRFs) [178], which are generative mod-
els, CRFs are more effective as they incorporate the observed data both at the
level of nodes as well as edges. Different from our approach, CRFs have a strict
probabilistic interpretation and use inference algorithms (e.g. belief propaga-
tion, iterative conditional modes, Gibbs sampling, graph-cut) that are signif-
icantly more expensive than the simpler eigenvector power iteration that we
use for optimizing our non-probabilistic objective score. In experiments we
compare and also combine our method with denseCRF [82] and show that the
two bring complementary value to the final solution.
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relation to image segmentation. Graph cuts, which represent a well-
known class of spectral clustering algorithms, have been widely used in image
segmentation [180, 141]. They are expensive in practice, as they require the
computation of eigenvectors of smallest eigenvalues for very large Laplacian
matrices. Fast graph-based algorithm for image segmentation exist, such as
[44], which is linear in the number of edges and it is based on an heuristic for
building the minimum spanning tree. It is still used as staring point by current
methods. Another approach [134] is to learn image regions with spectral graph
partitioning and formulate segmentation as a convex optimization problem.

relation to video segmentation. Many video segmentation methods
adapt existing image segmentation approaches. In [188] a parametric graph
partitioning model over superpixels is proposed. Hierarchical graph-based
segmentation over RGBD video sequences [65] also groups pixels into regions.
The problem is solved using bipartite graph matching and minimizing the
spanning tree. In [96], an efficient graph cut method is applied on a subset of
pixels. To our best knowledge, all of the efficient methods group pixels into
superpixels, regions from a grid or object proposals [41, 131, 111, 37] to handle
the computational and memory burden. However, the hard initial grouping
of pixels comes with a risk and could carry errors into the final solution, as it
misses details available only at the original pixel resolution.

our work is most related to [90, 113]. The solution is the leading eigenvec-
tor of the adjacency matrix, computed fast and stable with power iteration as
explained in Sec. 4.4. Note that using the unnormalized adjacency matrix in
combination with power iteration is the least expensive spectral approach pos-
sible and the only one that can be factored into simple and fast 3D convolutions.
This possibility gives our algorithm efficiency and speed (Sec. 4.5).

4.4 our approach
We formulate salient object segmentation in video as a graph partitioning

problem (foreground vs background), where the graph is both spatial and tem-
poral. Each node i represents a pixel in the space-time volume, which has
N = Nf ×H×W pixels. Nf is the number of frames and (H,W) the frame
size. Each edge captures the similarity between two pixels and is defined by
the pairwise function Mi,j. We require the pairwise connections between pix-
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els i and j, in space and time, to be symmetric and non-negative, defining a
N×N adjacency matrix M. We take into account only the local connections in
space-time, so M is sparse.

Let s and f be feature vectors of size N× 1 with a feature value for each node.
They will be used in defining the similarity function Mij (Eq. 16). For now we
consider the simplest case when (si, fi) represent single-channel features (e.g.
they could be soft masks, grey level values, edge or motion cues, or any pre-
trained features). Later on we show how we can easily adapt the formulation
to the multi-channel feature case. We define the edge similarity Mi,j using a
Gaussian kernel:

Mi,j = spi spj e
−α(fi−fj)2−βdist2i,j

= spi spj e
−α(fi−fj)2Gi,j

(16)

Mi,j ≈ spi spj︸︷︷︸
unary terms

[1−α(fi − fj)2]Gi,j︸ ︷︷ ︸
pairwise terms

.
(17)

In graph methods, it is common to use two types of terms for representing
the model over the graph. Unary terms are about individual node properties,
while pairwise terms describe relations between pairs of nodes. In our case,
si, sj describe individual node properties, whereas fi, fj are used to define
the pairwise similarity kernel between the two nodes. Note that in Eq. 17 we
approximate the Gaussian kernel with its first-order Taylor expansion. The
approximation is crucial in making the filtering approach possible, as shown
next. Hyper-parameters p and α control the importance of those terms.

To partition the space-time graph of video pixels, we want to find the strongest
cluster in this graph. We first represent a segmentation solution (i.e., cluster in
the space-time graph) with an indicator vector x, that has one element for each
node in the 3D space-time volume, such that xi = 1 if node (pixel) i is in the
video segmentation cluster (foreground) and xi = 0 otherwise (background).
We define the clustering score to be the sum over all pairwise similarity terms
Mij between the nodes inside the cluster. The higher this score, the stronger
the sum of connections and the cluster. The segmentation score can be written
compactly in matrix form as S(x) = x>Mx. Similar to other spectral approaches
in graph matching [90], we find the segmentation solution xs that maximizes
S(x) under the relaxed constraints ‖x‖2 = 1. Fixing the L2 norm of x is needed
since only relative soft segmentation values matter. Thus, the optimization
problem become one of maximizing the Raleigh quotient:
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xs = argmax
x

(x>Mx/x>x). (18)

The global optimum solution is the principal eigenvector of M. M is sym-
metric and has non-negative values, so the solution will also have non-negative
elements, by Perron-Frobenius theorem [48]. The final segmentation could be
simply obtained by thresholding. However, matrix M, even for a small video
has 20 million nodes (50 frames of 480× 854), making the problem of finding
the leading eigenvector with standard procedures intractable (Sec 4.5.2).

Next we show how to take advantage of the first-order expansion of the
pairwise terms defining M and break power iteration into several very fast 3D
convolutions in space and time, directly on the feature maps, without explicitly
using the huge adjacency matrix of the video. Our method receives as input
pixel level feature maps and returns a final segmentation, as the solution xs to
Eq. 18.

4.4.1 Power iteration with pixel-wise iterations

We apply power iteration algorithm to compute the eigenvector. At iteration
k+ 1, we have Eq. 19:

xk+1i ←
∑
j∈N(i)

Mi,jxkj , (19)

where, after each iteration, the solution is normalized to unit norm and N(i) is
the set of neighbors pixels with i, in space and time. Expanding Mi,j (Eq. 17),
Eq. 19 becomes:

xk+1i ← αspi
∑
j∈N(i)

spj [α
−1 − f2i − f2j + 2fifj]Gi,jxkj , (20)

xk+1i ← αspi (α
−1 − f2i )

∑
j∈N(i)

spj Gi,jxkj−

αspi
∑
j∈N(i)

spj f2jGi,jxkj

2αspi fi
∑
j∈N(i)

spj fjGi,jxkj .

(21)



4.4 our approach 57

4.4.2 Power iteration using 3D convolutions

In Eq. 21 we observe that the links between the nodes are local (M is sparse)
and we can replace the sums over neighbours with local 3D convolutions in
space and time. Thus, we rewrite Eq. 21 as a sum of convolutions in 3D:

X(crt) ← Sp · (α−11− F2) ·G3D ∗ (Sp ·Xk)−
Sp ·G3D ∗ (F2 · Sp ·Xk)+

2Sp · F ·G3D ∗ (F · Sp ·Xk),
(22)

Xk+1 ← X(crt)/‖X(crt)‖2, (23)

where ∗ is a convolution over a 3D space-time volume with a 3D Gaussian
filter (G3D), · is an element-wise multiplication, 3D matrices Xk, S, F have the
original video shape (Nf ×H×W) and 1 is a 3D matrix with all values 1. We
transformed the standard form of power iteration in Eq. 19 in several very fast
matrix operations: 3 convolutions and 13 element-wise matrix operations (mul-
tiplications and additions), which are local operations that can be parallelized.

4.4.3 Multi-channel SFSeg++

Our approach in Eq. 22 can easily accommodate multiple feature channels.
We extend the initial SFSeg formulation such that it can learn how to combine
the input feature maps for improving its final result into multi-channel versions
of the unary and pairwise maps: Sm and Fm, respectively, as described in the
next Eq. 24.

Sm ← σ(

Ncs∑
i=1

ws,iSi + bs1),

Fm ← σ(

Ncf∑
i=1

wf,iFi + bf1),

(24)

where σ is the sigmoid function σ(x) = 1/(1+ ex), Ncs and Ncf are the num-
ber of unary and pairwise input feature channels, respectively, 1 is an all-one
matrix for the bias terms and ws,i,wf,i,bs,bf are their corresponding learned
weights.

The final power iteration algorithm with 3D filtering for the multi-channel
case is described in the next equations: Eq. 25 and Eq. 26, which follow imme-
diately from the single-channel Eq. 22 and Eq. 23:
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X(crt)
m ← Spm · (α−11− F2m) ·G3D ∗ (Spm ·Xkm)−

Spm ·G3D ∗ (F2m · Spm ·Xkm)+
2Spm · Fm ·G3D ∗ (Fm · Spm ·Xkm),

(25)

Xk+1m ← X(crt)
m /‖X(crt)

m ‖2. (26)

learning over multi-channel sfseg++ We learn ws,i,wf,i,bs,bf pa-
rameters by minimizing the Focal-Dice loss [170] over the training video frames,
proved to be suitable for segmentation tasks (Eq. 27):

J(wt) =

Ntf∑
i=1

(1− 2
X(i)
m (wt)∩X(i)

t

X(i)
m (wt)∪X(i)

t

)γ, (27)

where Ntf is the number of training frames and Xt is the ground-truth video
segmentation.

We optimize the loss using a state-of-the-art gradient descent based opti-
mizer (AdamW [25]):

wt ← wt−1 − ηt(α
m̂t√

v̂t + ε
+ λwt−1), (28)

where ηt is the scaling factor and ∇wJ(wt−1) is used for updating first and
second momentum vectors: m̂t and v̂t respectively, at optimization step t.

We make SFSeg++ trainable by using a soft-binarization between iterations.
Consequently, it can learn end-to-end, from the original input frames all the
way to final output, in the case when the input feature channels are also learn-
able end-to-end.

4.4.4 TCONT: Temporal consistency metric

We introduce TCONT, a new metric that measures the consistency in time
of a video segmentation input. Different from other metrics in semantic seg-
mentation, this is specifically thought for video segmentation and focuses on
the key distinction between a video seen as a whole and a video seen as just
a set of frames. We first observe that a certain segmentation method could
perform well at the level of individual frames, without being able to provide
the desired consistency and coherency of the object shape over time. This as-
pect is important for video object segmentation methods and should constitute
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a complementary dimension for measuring performance, different from the
standard, per frame, IoU. Ideally, one would want a segmentation procedure
to be both accurate per frame as well as consistent over time. As we see in
experiments, while the two aspects are correlated, they are not the same.

Here we introduce the TCONT metric, which rebuilds each frame in the
segmentation video by taking into account its shape continuity from the left
and right frames, via optical flow (

−−−→
OFdir,

←−−−
OFrev). Ideally, if we warp the object

masks from the left and right frames into the current frame, using optical flow,
we would want to obtain the same shape, also identical to the current shape
in the middle. In order to evaluate this desired property, we transform the
segmentations of the previous and next frames into the current one, using
optical flow, and then add all three segmentations, past, present and future,
with equal proportions. This ensemble of three segmentations, which produce
a combined mask, as the average of the three can now be evaluated on its own,
with respect to ground-truth or with respect to the initial current, per frame
segmentation.

Intuitively, a large TCONT agreement score means that the frames are con-
tiguous and movement-consistent, such that the segmentation correctly changes
over time according to the movements of the object in the video, as expressed
by optical flow (without wrongly having large parts of the segmentation flick-
ering in noisy ways, in time). If such time consistency exists and the initial
masks are close to ground-truth in similar ways, it is expected that the average
mask of the three will maintain its high IoU measure with respect to ground-
truth. However, if the segmentations at the three moments in time are not
consistent temporally with respect to the object motion field, as estimated by
the optical flow, then we could expect the average of the three to produce a
degraded, blurry, less accurate mask.

Mathematically we define the TCONT metric as follows:

xtcont =
1

3
(
−−−→
OFdir(x1:n−1) + x2:n−1 +

←−−−
OFrev(x2:n)) (29)

TCONTgt = IoU(xtcont, gt2:n−1), (30)

where x is the soft video segmentation, gt is the ground-truth segmentation
to which we relate, n is the number of frames, IoU is the IoU metric com-
puted frame by frame, using a certain threshold, and

−−−→
OFdir,

←−−−
OFrev represents

the direct and reverse optical flow respectively. In Sec. 4.6.4 we validate exper-
imentally that SFSeg++ algorithm significantly improves the temporal consis-
tency of the initial input segmentation, while also improving the overall IoU
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performance. This result is confirmed in most of the experimental setups in
Sec. 4.6.

4.5 algorithm
Next we present our algorithm, which applies to both single or multiple

input channels. SFSeg++ (Alg. 4) starts by combining the input channels Si,
Fi, which could be of any kind: lower-level (optical flow, edges, gray-level
values) or higher-level pre-trained semantic features (deep features or initial
soft/hard segmentation maps) into the new feature maps Sm and Fm. In the
multi-channel SFSeg++ experiments we use as input channels the segmenta-
tion output of 15 top methods in the literature.

Next we initialize the solution Xm either with an uniform vector or with the
segmentation provided by Sm. At each iteration we first select a time frame
around the current one. In Step 2 we multiply the corresponding matrices,
apply the convolutions, compose the results and obtain the new segmentation
mask for pixels in current frame, using the space-time operations (as in Eq. 22).
At evaluation time, the solution needs to be binary, so after each iteration, we
project the solution in a more discrete space (see Sec. 4.5.1).

4.5.1 Soft-binarization: from continuous to discrete

The spectral solution over the power iterations is continuous. However, at
the very end, we need a binary, hard segmentation map for the object of in-
terest. While the relaxed, continuous solution is globally optimal w.r.t Eq. 18,
there is no guarantee that a simple, binary thresholding of the final continuous
solution will retain optimality. In fact, as previously observed in the graph
matching literature such optimality is often lost by thresholding, so keeping
the continuous solution as close as possible to the initial discrete domain comes
with a better final performance [91], even though the global optimum in the
spectral space is affected. Therefore, we took a similar approach, and after
the continuous power iteration is over, we continue with a set of iterations
after each of which the solution is soft-binarized, with a sigmoid function (con-
trolled by a parameter) that gradually brings the solution to the discrete do-
main. Thus, after each soft-binariaztion iteration, the solution is projected onto
an almost discrete space. So, after the very last iteration, we apply a hard
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Algorithm 4 SFSeg++: We linearly combine input channels into one single-
channel, using a set of weights (that we learn), then pass it through a pixel-
wise sigmoid function. At each iteration we pass through the whole video and
compute the updated soft-segmentation Xm. In the first step, we select a time
window around current frame [i − t, i + t] (t = 6 in experiments). Next we
compute the eigenvector using the proposed 3D convolutions. At the end of
the continuous power iteration (for Ncont iterations), we start soft-binarizing
the solution at the end of each iteration until all Niter iterations are completed
(see Sec. 4.5.1 for details).
Si, Fi - Input: unary and pairwise video feature maps
Nf - Input: number of video frames
Niter - Input: total number of iterations
Ncont - Input: number of continuous space iterations
Xm - Output: salient object segmentation in video

. Initialization. Note that for single-channel case, we directly assign maps
to Sm and Fm, without the sigmoid:

1: Sm ← σ(
∑Ncs
i=1 ws,iSi + bs1)

2: Fm ← σ(
∑Ncf
i=1 wf,iFi + bf1)

3: Xm ← Sm

4: for iter in [1..Niter] do
5: for i in [(t+ 1)..(Nf − t)] do

. STEP 1: Temporal window around frame i:
6: X(t), S(t), F(t) ← Ti,t(Xm, Sm, Fm)[i− t : i+ t]

. STEP 2: Compute new segmentation:
7: T1← (α−11− F2(t)) ·G3D ∗ (S

p
(t)
·X(t))

8: T2← −G3D ∗ (F2(t) · S
p
(t)
·X(t))

9: T3← 2F(t) ·G3D ∗ (F(t) · S
p
(t)
·X(t))

10: Xnew[i]← Sp
(t)
· (T1+ T2+ T3)

11: Xm ← normalize(Xnew)

. STEP 3: Soft-binarization (using a sigmoid):
12: if iter > Ncont then
13: Xm ← σ(Xm)
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Figure 16: Total runtime in logarithmic scale for 100 iterations, including the time for
building the adjacency matrix for power iteration. The filtering formulation
scales with the number of nodes, in contrast to power iteration, having an
exponentially better time.

threshold on a solution that is much closer to the desired discrete space than
the continuous spectral solution.

4.5.2 Computational complexity

We compare the standard power iteration eigenvector computation with our
filtering formulation, both from qualitative and quantitative points of view. In
terms of the quantitative comparative analysis we will look at both accuracy
(how close the filtering is to the exact solution) and speedup (how fast the 3D
filtering approach is to the classic Lanczos method for computing the principal
eigenvector of a matrix).

Lanczos [87] method for sparse matrices has O(kNfNpNi) complexity for
computing the leading eigenvector, where k is the number of neighbours for
each node, Nf the number of frames in video, Np the number of pixels per
frame and Ni the number of iterations. Our full iteration algorithm has also
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Figure 17: A toy example for qualitative comparisons with soft masks for an eleven
frames video. Starting with a very noisy input segmentation mask and
showing: SFSeg segmentations after 1 and 5 iterations; Power Iteration after
5 iterations; the real principal eigenvector. The results are almost identical,
proving that SFSeg is a good approximation. More, for all other methods
we compare with, this is tractable only on toy examples.

O(kNfNpNi) complexity, but with highly parallelizable operations, comparing
to Lanczos. The Gaussian filters are separable, so the 3D convolutions can be
broken into a sequence of three vector-wise convolutions, reducing the com-
plexity O(k) for filtering to 3O(k

1
3 ): 3*7*7=147 vs 3+7+7=17 for a 3x7x7 kernel.

We compare the actual runtimes of three solutions: a) Lanczos for computing
the principal eigenvector of the adjacency matrix built using the initial Eq. 16 b)
Lanczos for computing the principal eigenvector of the approximate adjacency
matrix based on Eq. 17 c) our 3D convolutions approach. For a small graph
of 4000 nodes (a video with 10 frames of 20× 20 pixels), a) and b) have 0.15

sec/iter and c) our 3D filtering formulation has 0.02 sec/iter (Fig. 16), which
is almost an order of magnitude faster. As the number of nodes grows our
3D filtering approach quickly becomes many orders of magnitude faster. The
proposed method scales better and has a huge advantage when working with
videos with millions of nodes. As stated before, the key reasons for the large
speedup is that we do not explicitly build the adjacency matrix and filtering is
parallelized on GPU.
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Figure 18: The angle and the IoU between the exact eigenvector (computer with Lanc-
zos method) and our SFSeg solution. The evolution of those metrics is
monitored over multiple SFSeg iterations.

4.5.3 Qualitative analysis

We perform tests on synthetic data, in order to study the differences between
the original spectral solution using the exponential pairwise scores (Eq. 16)
and the one obtained after our first-order Taylor approximation trick (Eq. 17).
In Fig. 17 we see qualitative comparisons between the solutions obtained by
three implementations: 1) SFSeg, 2) classical power iteration and 3) eigenvector
computed with Lanczos method in NumPy [60], with original pairwise scores.
The outputs are almost identical. In this synthetic experiment, the input is very
noisy, but all spectral solutions manage to reconstruct the initial segmentation.

4.5.4 Quantitative analysis

We analyze the numerical differences between the original eigenvector and
our approximation (SFSeg). We plot the angle (in degrees) and the IoU (Jac-
card) between SFSeg (first-order approximation of pairwise functions, opti-
mized with 3D convolutions) and the original eigenvector (exponential pair-
wise functions in the adjacency matrix), over multiple SFSeg iterations in Fig. 18.
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Figure 19: When the video is a contiguous stream or when it is very large, instead
of applying our spectral method on the full video, we can apply fewer
iterations on smaller video sub-windows, with similar effect. To speed up
convergence, we initialize the current solution with the final solution over
the previous sub-window (for the frames that overlap).

Note that in these experiments we intentionally start from a far away solution
(70 degrees difference between the SFSeg initial segmentation vector and the
original eigenvector) to better show that SFSeg indeed converges to practically
the same eigenvector, even when starting with a weak initialization. Such com-
parisons can be performed only on synthetic data with relatively small videos,
for which the computation of the adjacency matrix needed for the original
eigenvector is tractable. The results clearly show that SFSeg, with first order
approximations of the pairwise functions on edges and optimization based on
3D filters, reaches the same theoretical solution, while being orders of magni-
tude faster.

4.5.5 Online vs Offline processing

A full SFSeg++ iteration consists of passing through the entire video. In this
form (Alg. 4), we can pass to the next iteration of the algorithm only after we
go through the full video, making it an offline algorithm. That is because we
need to pass (filter in 3D) through the whole video multiple times until we
reach convergence.
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With every iteration, local information is propagated one step further in
both space and time. In practice, the method converges after several iterations.
Therefore, far-away information is not that useful for determining the segmen-
tation at a given frame. The main reason for that is that objects move and
change their shape from one frame to the next, making far connections less
relevant.

Based on this observation, we could expect that in practice we only need
partial iterations, to apply the iterations on smaller sub-volumes of video (see
Fig. 19). This also allows us to use SFSeg++ as an online segmentation method.
We analyzed the convergence of the solution when instead of performing all
iterations on the full video, we break it into a sequence of smaller number of
iterations, in local sub-windows around a moving center frame. We observed
almost identical results with the full iterations version, but at a lower computa-
tional complexity (see next paragraph). The speedup factor is identical to the
size of the sub-window relative to the full video, for an equal number of itera-
tions. Note however that all our speed comparisons to the Lanczos method are
using iterations over the full video. Also all reported results are obtained with
the original full video iterations method. As stated here, the two versions, with
partial and full iterations, achieve the same results for all practical purposes.

numerical considerations. The complexity of filtering in a sub-window
is O(kqNpNi), where q is the number of frames in a sub-window. For the
online version, q represents the number of frames in the past that we need to
consider from the current incoming frame. It can be shown that sub-window
filtering could reduce in practice the complexity of filtering over the full offline
video by up to Nf

q times. Fig. 19 can help visualize why this is the case.

4.6 experimental analysis

4.6.1 Single-channel SFSeg

on davis-2016 DAVIS-2016 [130] is a densely annotated video object seg-
mentation dataset. It contains 50 high-resolution video sequences (30 train/20

valid), with a total of 3455 annotated frames of real-world scenes. The bench-
mark comes with two tasks: the unsupervised one, where the solutions do not
have access to the first frame of the video and the semi-supervised one, where
the methods use the ground-truth from the first frame.
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Input
Method

Input
Score

(J)

SFSeg
over

Input (J)

Improved
Videos

(%)

Semi OnAVOS [163] 86.1 86.3 (+0.2) 65

Supervised OSVOS-S [109] 85.6 86.0 (+0.4) 90

PReMVOS [103] 84.9 88.2 (+3.3) 90

FAVOS [21] 82.4 83.0 (+0.6) 95

OSMN [185] 73.9 75.9 (+2.0) 95

Un COSNet [102] 80.5 80.9 (+0.4) 65

Supervised MotAdapt [143] 77.2 77.5 (+0.3) 65

PDB [147] 77.2 77.4 (+0.2) 60

ARP [77] 76.2 77.7 (+1.5) 90

LVO [157] 75.9 78.8 (+2.9) 90

FSEG [72] 70.7 72.3 (+1.6) 95

NLC [41] 55.1 55.6 (+0.5) 65

Average Boost +1.1% 80%

Table 5: Single-channel SFSeg on DAVIS-2016 tasks. SFSeg has the same hyper-
parameters per task. We also included results for other competitive (non-
SOTA) inputs. 2nd column: Jaccard score for the input method; 3rd column:
score after applying SFSeg over the input method; 4th column: the percentage
of videos when the performance is improved after using SFSeg. The average
SFSeg boost is 1.1% in Jaccard score. On average SFSeg raises performance
for 80% of videos.

We test the single-channel version, SFSeg, with input from pre-computed
segmentations of the video produced by top methods from DAVIS-2016, on
both tasks. For the features maps, we initialized S with the pre-computed
input segmentation values. For F, we used two channels: the magnitude for
the direct optical flow and for the reverse optical flow. For optical flow we
used [136] implementation of Flownet2 [69]. We set: Ni = 5; α = 1 and p = 0.1
for unsupervised task and p = 0.2 for the semi-supervised one. The algorithm
is implemented as in Alg. 4. For the temporal consistency metric we used the
same optical flow implementation.
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Figure 20: We present the evolution of the single-channel SFSeg towards convergence,
over several iterations, starting from the output of different methods, as
state in square parenthesis. Using the input segmentation mask (column
2) from top methods: [201, 203, 72, 186, 77, 102], we show the intermedi-
ate value of the mask at second iteration (column 3) and on convergence
(iteration 5, column 4). On the last column, we also show for comparison,
the output of the learned multi-channel SFSeg++ (with 15 input channels,
from 15 different methods). Note the vastly superior results of SFSeg++,
which learns to combine many channels, learning both to recover occluded
objects (1st and last line), but also to remove distractors (lines 2-5).

In Tab. 5 we show the results of our method, SFSeg, when combined with
top methods on DAVIS-2016, semi-supervised and unsupervised tasks. For a
better understanding of the results, we also show the effect of applying SFSeg
over other competitive, non-SOTA methods. We noted that the improvement is
not related with the quality measure of the input: in some cases the improve-
ment is stronger when input comes from stronger methods. Nevertheless, we
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Figure 21: Qualitative output for several videos in DAVIS-2016, from left to right: the
best method (which is also part of the ensemble), the ensemble output
(arithmetic mean over 15 top methods), SFSeg applied over the ensemble
output, the learned ensemble output with neural nets and finally, our SF-
Seg++. On the last column we also show the ground-truth (GT) for compar-
ison. Both SFSeg and SFSeg++ improve significantly (especially the multi-
channel learnable SFSeg++) over their input channels.

consistently improve over the input method, whose segmentation mask we use
to initialize the segmentation X0 (Eq. 22).

In Fig. 20 we show the iterative effect of SFSeg. Each example starts from the
initial RGB frame and its initial segmentation (as produced by top DAVIS-2016

methods), and presents the segmentation at an intermediate iteration and the
final one, when SFSeg reaches convergence. For comparison, we also show
the output of the learnable multi-channel SFSeg++. Note how SFSeg++ learns
to get the best of the combination of multiple inputs, each with significantly
lower performance. Also note how the iterative 3D spectral filtering process of
SFSeg improves from one iteration to the next.

In Fig. 21 we show comparative qualitative examples between the output of
the best method in the ensemble (MATNet [201]), the arithmetic mean, SFSeg
over this mean, the learned ensemble and SFSeg++.

on segtrackv2 SegTrackv2 [95] is a video object segmentation dataset, con-
taining 14 videos, with multiple objects per frame. The purpose for video ob-
ject segmentation task is to find the segmentation for all the objects in the frame,
either by using the first frame or not. We use our standalone method, SFSeg,
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Method Score (J)

LVO [157] 57.3
FSEG [72] 61.4

OSVOS [110] 65.4
NLC [41] 67.2

MaskTrack [76] 70.3
BB + SFSeg + denseCRF (ours) 72.7

Table 6: Comparative results on SegTrackv2. Our standalone solution, Backbone +
SFSeg + denseCRF, obtains the best results among the other top methods in
the literature.

applied over the soft output of a competitive Backbone (BB): UNet [138] over
ResNet34 [61] pretrained features, fine-tuned 40 epochs on salient object seg-
mentation in images on DUTS dataset [168], using RectifiedAdam as optimizer.
In Tab. 6 we show comparative results of our standalone method and other top
solutions on the SegTrackv2 dataset.

4.6.2 Single-channel SFSeg vs denseCRF

We compare SFSeg with denseCRF [82], which is one of the most used refine-
ment methods in video object segmentation [147]. When applied over the same
backbone presented above, we observe that SFSeg brings a stronger improve-
ment than denseCRF on both DAVIS-2016 and SegTrackv2 (Tab. 7). Moreover,
the two are complementary: in combination, the performance is boosted by the
largest margin.

4.6.3 Learned Multi-channel SFSeg++

Before we present the actual tests performed with SFSeg++, we provide more
details about the exact experimental setup. In the comparative experiments,
SFSeg++ uses, as input feature channels, the outputs of the top 15 methods, as
published on DAVIS-2016 website, for the task where no ground-truth is given
in the first frame of the test videos (officially labeled the "Unsupervised task"):
MATNet [201], AnDiff [186], COSNet [102], ARP [77], UOVOS [203], FSeg [72],
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Method DAVIS
(J)

SegTrack
v2 (J)

BB 67.2 72

BB + denseCRF 68.1 72

BB + SFSeg 68.7 72.1
BB + SFSeg + denseCRF 69.2 72.7

Table 7: Refinement Comparison. We compare SFSeg with denseCRF when applied
to a competitive end-to-end Backbone (as detailed in Sec. 4.6.1). While SFSeg
outperforms denseCRF when used individually, the two methods prove to be
not only different, but also complementary, since combining them boosts the
Jaccard score.

LMP [156], TIS [56], ELM [88], FST [127], CUT [74], NLC [41], MSG [126],
KEY [89], CVOS [153], TRC [47]. The experiments which test the ability of
our learning approach to deal with noisy input channels, modify these initial
channels according to the different types of noise used, as explained in the
next Section 4.6.3. Also, in all experiments we train all models in a supervised
fashion only on the DAVIS-2016 training split. Results are, of course, reported
on DAVIS-2016 validation set. Thus we follow the exact official protocol of
DAVIS-2016 challenge. For efficiency and compactness, we also observed that
in the case of SFSeg++ we can use the same 15 initial channels to construct both
unary and pairwise maps. In other words Si = Fi and their learned weights
are also shared: ws,i = wf,i.

applying multi-channel sfseg++ over noisy input To better under-
stand the effectiveness of learning over multiple input channels we first analyse
our method’s robustness to noise. Thus, we added different types of noise to
the input channels. First, we keep only the top 3 original input methods, re-
placing the rest 12 methods with noise. Second, we only disturb the rest 12

methods with noise. Third, we used a combination of the two: 5 methods
disturbed and 7 replaced with noise.

We tested with three types of noise: a) Uniform (U) - This introduces a low
to moderate level of noise. We add uniform noise in [0, 0.1], uniformly over the
whole input map (which has values between 0 and 1 and normalize the result,
b) Salt&Pepper (SP) - This noise is more invasive for the original maps. We
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randomly replace pixels with 0 or 1, with 20% probability and c) Black and
White randomly placed Rectangles (BWR) - This is an aggressive and more
structured type of noise, to simulate the effect of an occlusion or per frame
distractor. We add one rectangle per frame, uniformly sampling its position
(inside 100px margins) of randomly sized weight and height, filling between
2% to 5% of the total frame size. We present the results and comparisons
in Tab. 8, where for the basic Ensemble we use the average output of the 15
different methods and for the Best Learned Ensemble we selected among the
different Deep Neural Nets architectures that learn over the same 15 input
channels, over a certain temporal window (see Sec. 4.6.3 for more details).

In Fig. 22 we show the actual weights learned for the different cases of added
noise or for the case of using the original input channels. Note that the input
methods (channels) are presented in the descending order of their individual
performance. We can immediately notice that SFSeg++ learns to select the
most relevant channels (larger weights) and ignore the more noisy or weaker
ones (lower weights). For example, when no noise is added (Fig. 22 - Top
15), the weights are correlated with performance, thus channels with better
performance (on the left side of the plot) tend to have larger weights than
the ones with weaker performance (towards the right side of the plot). When
noise is added to some channels (labeled as "Noisy" in Fig. 22) or some chan-
nels are completely replaced with noise (labeled as "Noise" in Fig. 22), the top
3 methods (without noise) receive very strong weights, while the remaining
ones much weaker weights. It is also interesting that for the same type and
amount of noise being added, the middle 5 channels have larger weights than
the last 7 channels, as they have better individual performance (case 2). Also,
when noise is added to some channels while others are replaced by noise (case
3), the noisy ones receive significantly stronger weights than the ones that are
complete noise, with close-to-zero weights. The visual analysis of the weights
reveals that learning is indeed meaningful: it automatically discovers which
channels are relevant and which ones are not and weighs them accordingly.

Key observations: When interpreting the learned weights over the input chan-
nels, we observed that the channels having noise added receive very low weights
and become mostly ignored. The selection of channels taking place during
learning focuses more on top methods or channels without noise. This shows
the efficiency and robustness of our learning. Also note that while the single-
channel SFSeg is able to improve significantly over poor inputs (SP), SFSeg++
truly distances itself from even the best learned ensembles. SFSeg++ achieves
best performance in all cases, highlighting that our algorithm learns to take
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Figure 22: Learned Channels Weights: We display the learned weights values for SF-
Seg++ learning over unmodified input channels from top 15 methods as
well as the weights for the different cases of added noise (as explained in
Sec. 4.6.3). The input methods are shown from left to right, in descend-
ing order of their individual performance. We immediately notice that the
learned weights are larger for channels from methods with superior perfor-
mance (towards the left: top 3 vs the remaining 12 or middle 5 vs last 7) or
channels not corrupted by noise (top 3 vs the remaining 12). This indicates
that learning is meaningful: it is an efficient and automatic way to select
the relevant input channels.

advantage of relevant details in input maps better than any competitor - due
to the combination of learning and clustering over the temporal dimension.

comparing sfseg++ with learned neural net ensembles To better
understand the value of the space-time clustering approach combined with
learning as opposed to simply learn to combine multiple input channels, we
compared against some powerful deep neural networks ensembles, which take
as input the same channels as SFSeg++. We varied the number of parameters
and architectures of the deep networks, to make sure the comparisons do not
depend on the specific neural net size and architecture.

The learning task was for the net to learn to predict the final segmentation,
in a supervised way, using the DAVIS-2016 training set for which ground-truth
segmentations are available. Therefore, SFSeg++ and all neural net ensembles
had exactly the same input (at testing and training) and the same supervised
training set. Also note that the neural net ensembles also had access to inputs
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Noise
Type

Noise Combination Ensemble SFSeg
over

Ensemble

Best Learned
Ensemble

SFSeg++

Top 3 + Noise 12 80.6 80.7 84.8 85.1
U Top 3 + Noisy 12 83.5 83.7 84.4 85.4

Top 3 + Noisy 5 + Noise 7 84.2 84.2 84.9 85.2

Top 3 + Noise 12 61.5 62.5 85.5 85.5
SP Top 3 + Noisy 12 81.0 83.3 84.9 84.9

Top 3 + Noisy 5 + Noise 7 83.8 84.0 85.0 85.0

Top 3 + Noise 12 79.6 80.2 85.5 85.6
BWR Top 3 + Noisy 12 82.2 83.0 84.8 84.9

Top 3 + Noisy 5 + Noise 7 84.3 84.3 85.9 85.9

None Top 15 83.5 83.6 85.5 86.6

Table 8: SFSeg++ Noisy Input: The experiments are done for 3 types of noise: Uniform
(U), Salt&Pepper (SP), Black and White Rectangles (BWR) (see Sec. 4.6.3 for
details). We test the performance of SFSeg++ in 3 combinations of the noise
with the 15 input methods. Note that the largest difference between SFSeg++
and the best learned NN ensemble is on Uniform noise cases, where the
input is less affected by noise. This proves that training with SFSeg++ over
several input channels exploits more relevant details in input compared with
other learned ensembles. It also shows the effectiveness of clustering over the
temporal dimension.

over several time frames (5-frames temporal windows), thus the temporal di-
mension was not absent from the neural net ensembles. Of course that SFSeg++
has access to the full video, indirectly through the space-time power iteration
process, but, as stated previously (Sec 4.5.5) it is not the width of the tempo-
ral window that matters most, but rather the iterative clustering procedure.
Moreover, during the SFSeg++ training phase, for efficiency and without loss
in performance, we only consider sub-videos of 5 consecutive frames, which
are in fact identical to the ones considered by the most powerful learned en-
sembles.
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NN Ensemble Method Number
of parame-

ters

Jaccard
(%)

Unet3D large 1.4 mil 85.4
Unet3D small 330k 85.4
Unet2D 140k 83.9
Shallow2 2D 35k 84.8
Shallow3 2D 5k 84.0
Shallow4 2D 380 85.5
SFSeg++ 16 86.6

Table 9: Comparison to learned neural net ensembles: we trained various ensembles’
net architectures (2D, 3D, UNet based, shallow NN), with different numbers
or parameters, using a relatively small training set of 30 videos, starting with
the same input maps from the top 15 input methods as SFSeg++. Note that
SFSeg++ outperforms the best learned NN ensembles by 1.1%, with only 16

learned parameters (one parameter per input channel and the bias term).

We started creating simple and then more complex neural net ensembles,
w.r.t architecture and number of parameters. Interestingly enough, we found
out that a deep net ensemble with many parameters is not so strong as one with
fewer parameters. Perhaps this is not that surprising considering how small
the training set is (30 training videos), so large nets are prone to overfitting on
this small training set. Moreover, note that the arithmetic mean is usually a
very strong baseline when we average over multiple top methods.

In order to choose a good neural net ensemble for segmentation we started
from UNet [138] architecture for 2D (per frame) and adapted it for 3D (per
5 frames), with a various number of parameters (between 380 - 1.4 millions).
For the small network ensembles we stacked 2 to 3 convolutional layers (with
kernel size of 1, 3, 5) followed by ReLU non-linearity. As in the case of SFSeg++,
we optimize the Focal-Dice loss [170] (with 0.75 coefficient) using an AdamW
optimizer with AMSGrad [25] from Pytorch [97], with a ReduceLROnPlateau
scheduler (with a reduce factor of 0.5) and a strong L2 regularization, for each
architecture choosing the best among learning rates (1e-1, 1e-2, 1e-3, 1e-4, 1e-
5), L2 regularizer factor (5e-1, 1e-2, 5e-2, 1e-3, 5e-3) and scheduler patience for
reducing the learning rate (5, 10 epochs).
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Tab. 9 confirms that the 3D versions perform significantly better compared
with the 2D ones. As mentioned above, the experiments also come with the in-
teresting result that under our task assumptions (learn an ensemble over very
strong state-of-the-art input methods with a small training and validation sets),
the smaller nets often perform better.

Key observations: The experimental comparisons between the learnable multi-
channel SFSeg++ and different types and sizes of neural net ensembles show
a clear advantage for SFSeg++, which is mainly due to several factors: 1) the
ability of SFSeg++, through space-time clustering, to better take advantage of
the temporal dimension, naturally and with minimal training data required.
2) the ability of SFSeg++ to not overfit for small training sets, given its small
set of learnable weights as compared to the much larger neural nets. Note,
however, as also stated in the theoretical section on learning (Sec. 4.4.3), that
in principle SFSeg++ could also learn its input deep feature extractors, end-
to-end, if needed, as long as they are learnable (differentiable: e.g. deep nets)
themselves.

learned multi-channel sfseg++ on davis-2016 This experiment fo-
cuses on the improvements SFSeg++ could bring over state-of-the-art and other
top, competitive approaches: a learned NN ensemble (as presented in the pre-
vious section), basic ensemble (average of 15 single channel outputs) and top
single-channel methods. All training was performed only over the DAVIS-2016

trainset of 30 videos, with ground-truth segmentations for all frames available.
Again, all methods receive the same input from 15 segmentation methods, as
previously described in Sec. 4.6.3. We report results in Tab. 10 and in Fig. 23.

Key observations: While SFSeg outperforms current single state-of-the-art in
DAVIS-2016, the learnable multi-channel SFSeg++ outperforms the best learn-
able NN ensembles by a solid 3.1%. It is interesting to note that SFSeg alone,
without learning applied over the single-channel output of the standard av-
erage ensemble, further improves over the ensemble. Then, SFSeg++, which
has the ability to learn over multiple input channels, outperforms the best
learned NN ensemble. These two results strongly indicate the complementary
value that learning and iterative space-time clustering bring, over the more
traditional feed-forward pass in the conv neural nets, which do not take full
advantage of the temporal dimension. These experiments along with the ones
from the previous Sec. 4.6.3 also show that in the case of small supervised
training data, a general, non-specific, data independent space-time clustering
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Method Jaccard
(%)

J Diff
over
Best
(%)

J Diff over
Ensemble

(%)

Weakest Method (TRC [47]) 47.3 -35.1 -36.2
3rd Best Method (COSNet [102]) 80.5 -1.9 -3.0
2nd Best Method (AnDiff [186]) 81.7 -0.7 -1.5
Best Method (MATNet [201]) 82.4 0 -1.1
SFSeg(Best Method) 82.7 +0.3 -0.8
Ensemble 83.5 +1.1 0

SFSeg(Ensemble) 83.6 +1.2 +0.1
Best NN Ensemble 85.5 +3.1 +2.0
SFSeg++ 86.6 +4.2 +3.1

Table 10: SFSeg++ performance and comparisons to top methods and ensembles
over DAVIS-2016 validation set. When starting from 15 input methods,
both SFSeg and SFSeg++ improve over their input, outperforming competi-
tion, which comprises of state-of-the-art methods on DAVIS-2016 (+0.3% vs
+4.2%) and the classic Ensemble, as average over its input channels (+0.1%
vs +3.1%). Most powerful, SFSeg++ proves to bring complementary value
to supervised learning, as it outperforms the best learned NN Ensemble by
1.1%.

approach combined with a small set of learned weights could be significantly
more effective than models that rely heavily on supervised training data.

4.6.4 TCONT: Temporal consistent SFSeg++

We analyze next the influence of our SFSeg++ algorithm on the temporal
consistency of the segmentation masks over the video volume, using the newly
introduced TCONT metric, detailed in Sec. 4.4.4. We apply TCONT with re-
spect to ground-truth, for the basic Ensemble and SFSeg++, showing the results
in Tab. 11. We also present some qualitative samples focusing on the temporal
consistency in Fig. 24.
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Figure 23: Visual experimental comparisons: to better understand the difference in
performance between various methods, we show them here, as plot bars,
in ascending order, starting from the top 3 single methods, SFSeg on the
Best method, a basic average Ensemble, SFSeg applied over the average En-
semble, the Best learned neural net (NN) Ensemble and SFSeg++. While
SFSeg improves over single-channel input methods, SFSeg++ boost is sig-
nificantly larger, even when compared with the Best learned NN Ensemble.

Key observations: After applying SFSeg++, the temporal consistency of the
output is significantly improved by 4.5% with respect to ground-truth. This
highlights the fact that our algorithm not only improves the overall segmenta-
tion accuracy, but also makes it more consistent with the object motion field,
a property that is desired in the context of videos. We believe that the main
reason for our improved temporal consistency comes directly from the fact that
our special video 3D filtering is designed from the start having both space and
time in mind, which makes it more suitable for object segmentation in video
than other more traditional approaches that start from the level of individual
frames.

Intuitively, the difference between two methods having a similar frame level
accuracy, but with different consistency measures at temporal, video level,
could be better understood by the following example. Even though the two
approaches have, initially similar accuracy, the method which is more stable
with respect to the motion field is more likely to produce a segmentation of
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Figure 24: Visualization examples of temporal consistency: in the first two columns
we show the basic Ensemble (average over top 15 methods) and our SF-
Seg++. In the 3

rd and 4
th column we show the mask results computed

by TCONT (our temporal consistency) for the Ensembles and SFSeg++,
respectively, while the ground truth is shown in the last column. We
show TCONT views for three examples in different videos, computed us-
ing Eq. 29, as explained in Sec. 4.4.4, while taking into account a temporal
window (left, middle, and right frame) averaged after warping with optical
flow. Please observe that the average map, used for measuring consistency,
is crisper and of better quality in the case of SFSeg++. This shows on one
hand, a better consistency with respect to itself and with respect to ground-
truth, given the independently computed object motion field (as estimated
by the optical flow).

higher quality after optical flow warping than the one which is less stable with
respect to motion. Therefore by measuring such stability with respect to mo-
tion, we are in fact looking at the ability of a method to intrinsically consider
time and motion, and that ability is definitely a desired property for any video
object segmentation procedure.

4.6.5 Running time

The algorithm scales well, its runtime being linear in the number of video
pixels, as detailed in Sec. 4.5. For a frame of 480× 854 pixels, it takes 0.01 sec
per iteration, compared with 0.8 sec for denseCRF. The time penalty of adding
SFSeg is minor for most methods, which take several seconds per frame (e.g.
4.5 sec per frame [109], 13 sec per frame [103]). We tested on a GTX Titan X
Maxwell GPU, in Pytorch [97].
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Temporal Consistency
IoU wrt GT (%)

Weakest Method [47] 46.0
Best Method [201] 77.0

Ensemble 75.7
SFSeg++ 80.2

+4.5%

Table 11: TCONT metric for measuring temporal consistency. We compute the
TCONT metric for best and weakest methods, for the Ensemble over all
15 input methods and for our SFSeg++. SFSeg++ increases the temporal
consistency of the input by 4.5% with respect to GT when compared with
the basic Ensemble.

4.7 concluding remarks
We formulate video object segmentation as clustering in the space-time graph

of pixels. We introduce an efficient spectral algorithm, Spectral Filtering Seg-
mentation (SFSeg), in which the standard power iteration for computing the
principal eigenvector of the graph’s adjacency matrix is transformed into a set
of 3D convolutions applied on 3D feature maps in the video volume. Our
original theoretical contribution makes the initial intractable problem possible.
Then we make the 3D spectral filtering algorithm fully learnable, and extend it
to SFSeg++, which performs efficient spectral clustering with 3D convolutions
over learned combinations of input channels. We validate experimentally the
value of each technical contribution. First, we show theoretically that our fast
solution based on first-order Taylor approximation of the original pairwise po-
tential used in spectral clustering is practically equivalent to the original one.
Secondly, in experimental comparisons, we show that the single-channel SFSeg
consistently improves (for 80% of videos), when applied as a refinement proce-
dure over all top published video object segmentation methods, at a small ad-
ditional computational cost. Moreover, we also show that SFSeg also achieves
top performance in combination with other backbone networks (not necessarily
state-of-the-art). Thirdly, we demonstrate the effectiveness and robustness of
learning over multi-channels by experimenting with different types of noisy in-
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put channels. And last, we introduce TCONT, a temporal consistency measure,
which we use to analyze the methods’ consistency with respect to the object
motion field in video. The analysis indicates that SFSeg++ is indeed more sta-
ble with respect to the object’ motion field (computed independently), which
validates our motivation for the spatio-temporal clustering approach that is
meant to preserve such stability in space and time. We test the learnable multi-
channel SFSeg++ against powerful learned neural network ensembles, using
the same input masks provided by 15 published methods. Thus, we validate
all four key aspects of our contributions: 1) the efficiency of the 3D filtering ap-
proach as a way to perform spectral space-time clustering; 2) the effectiveness
of such clustering in real experiments; 3) the efficiency of learning over multi-
ple channels and its robustness to noise and 4) the superior results obtained by
our spectral approach in all comparative experiments performed. In addition,
SFSeg++ with minimal number of parameters for learning is better and more
robust in the face of limited supervised training data, than powerful ensembles
learned with deep neural networks. The consistent improvements in practice
over different top quality input channels, brought by SFSeg and SFSeg++, indi-
cate that our spectral approach brings a new and complementary dimension to
clustering in space-time, which is not fully addressed by the current published
solutions.

Next in the thesis I integrate this space-time approach in the tracking pipeline,
showing the benefits of having a spectral clustering solution in video, but at
the level of very refined feature space, like the segmentation mask.



5
I M P R O V I N G T R A C K I N G
W I T H 3 D S P E C T R A L
S E G M E N TAT I O N

We propose an object tracking method, SFTrack++, that smoothly learns to
preserve the tracked object consistency over space and time dimensions by tak-
ing a spectral clustering approach over the graph of pixels from the video, us-
ing a fast 3D filtering formulation for finding the principal eigenvector of this
graph’s adjacency matrix, proposed before in the context of instance segmen-
tation. To better capture complex aspects of the tracked object, we use multi-
channel inputs, which permit different points of view for the same input. The
channel inputs are in our experiments, the output of multiple tracking methods.
After combining them, instead of relying only on hidden layers representations
to predict a good tracking bounding box, we explicitly learn an intermediate,
more refined one, namely the segmentation map of the tracked object. This
prevents the rough common bounding box approach to introduce noise and
distractors in the learning process. We test our method, SFTrack++, on five
tracking benchmarks: OTB, UAV, NFS, GOT-10k, and TrackingNet, using five
top trackers as input. Our experimental results validate the pre-registered hy-
pothesis. We obtain consistent and robust results, competitive on the three
traditional benchmarks (OTB, UAV, NFS) and significantly on top of others (by
over 1.1% on accuracy) on GOT-10k and TrackingNet, which are newer, larger,
and more varied datasets.

5.1 zooming out: segmentation within track-
ing

The previous chapter presents SFSeg++, an efficient object segmentation so-
lution in video focused on space and time integration. This chapter focuses on
SFTrack++, a tracking solution that integrates previous findings on segmenta-

E. Burceanu, SFTrack++: A Fast Learnable Spectral Segmentation Approach for Space-Time
Consistent Tracking, Neural Information Processing Systems - Pre-registration Workshop
(NeurIPSW) 2020
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tion in the tracking task, emphasizing the need to have a more refined represen-
tation as an intermediate task rather than using just rough tracking bounding
boxes. We analyzing this chapter following the key aspects introduced at the
beginning of the thesis:

• A. Space-time consistency: Space and time interact here in a similar way
like in the previous chapter, with the difference that here the segmenta-
tion representation is of a lower quality because it comes as a learned
neural transformation from bounding boxes (compared with the output
of the top segmentation solutions).

• B. The power of the consensus: This point is also similar to SFSeg++.
From the segmentation point of view, we iteratively reach the consen-
sus in each neighbourhood, at convergence. And in the second part, we
ensemble over top tracking methods.

• C. Exploiting multiple intermediate representations: Empirical results
over five tracking benchmarks show with confidence that using the seg-
mentation as an intermediate representation for tracking helps a lot. We
refine those more natural descriptors of the object and compare the final
result against the initial input or other ensemble versions for tracking.

• D. A limited quantity of supervision: Except for the clustering part
where we refine the middle representation (the segmentation), the ap-
proach is fully supervised. We will take a step further in this direction in
the next chapter.

• E. Experts: Making use of existing models: We use experts (state-of-
the-art trackers on various benchmarks) and learn how to combine them
for achieving an overall better performance. We see the limits of our 3D
spectral segmentation in tracking when working with top methods as
input channels.

5.2 context
Better using the temporal aspect of videos in visual tasks has been actively

discussed for a rather long time, especially with the large and continuous
progress in hardware. The first aspect we tackle in our approach is a seam-
less blending of space and time dimensions in visual object tracking. Current
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methods mostly rely on target appearance and frame-by-frame processing [110,
93, 30], with rather few taking explicit care of temporal consistency [10, 71]. In
the spectral graph approach, nodes are pixels and edges are their local rela-
tions in space and time, while the strongest cluster in this graph, given by the
principal eigenvector of the graph’s adjacency matrix, represents the consistent
main object volume over space and time.

A second observation challenges the rough bounding box (bbox) shape used
for tracking. While it provides a handy way to annotate datasets, it is a rather
imperfect label since it leads to errors that accumulate, propagate, and are
amplified over time. Objects rarely look like boxes, and bboxes contain most
of the time significant background information or distractors. Since having a
good segmentation for the interest object directly influences the tracking per-
formance, we constrain an intermediary representation, a segmentation map,
which aims to reduce the quantity of noise transferred from a frame to the next
one. We integrate it into our end-to-end flow, as shown in Fig. 25.

A third point we emphasize on is relying on multiple, independent charac-
teristics of the same object or multiple modules specialized in different aspects.
This comes with an improved ability to understand complex objects while in-
creasing the robustness [10]. We, therefore, use the SFSeg++ spectral approach,
where for the channel inputs in its formulation we use tracking outputs from
multiple solutions.

The main contributions of our approach are:

• SFTrack++ brings to tracking a natural, contiguous, and efficient approach
for integrating space and time components, using a fast 3D spectral clus-
tering method over the graph of pixels from the video, to strengthen the
tracked object’s model.

• We explicitly learn intermediate fine-grained segmentation as opposed
to rough bounding boxes in our three phases end-to-end approach to a
more robust tracking solution.

• We integrate into our formulation a way of learning to combine multiple
input channels, offering a wider view of the objects, harmonizing differ-
ent perceptions, for a powerful and robust approach.
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Figure 25: SFTrack++: We start from video’s RGB and 1st frame GT bbox of the
tracked object. We run state-of-the-art trackers, in an online manner, while
fine-tuning NNfeat2seg network frame-by-frame (pretrained in Phase 1) to
transform the extracted feature maps (e.g. bboxes) to segmentation maps.
Next, we learn to combine multiple segmentation inputs and refine the fi-
nal mask using a spectral approach, applied also online over a moving win-
dow containing the previous N frames, for Niter spectral iterations (Phase
2). In Phase 3, we learn a bbox regressor from the final segmentation mask,
NNseg2box and fine-tune all our parameters on the tracking task.

5.3 relation to prior work
general object tracking Out of the three main trackers families, Siamese
based trackers gained a lot of traction in recent years for their high speed
and end-to-end capabilities [9, 94, 93, 198]. Most approaches focus on ex-
haustive offline-training, failing to monitor changes w.r.t. the initial template
[152, 181, 20], while others update their model online [164, 27]. Nevertheless,
the robustness towards unseen objects and transformations at training time
remains a fundamental problem for Siamese trackers.



5.3 relation to prior work 86

meta-learning approaches for tracking [128, 7, 166] come with an in-
teresting way of adapting to the current object of interest, while keeping a short
inference time, by proposing a target-independent tracking model. One major
limitation for both those approaches, Siamese and meta-learning trackers, is
that they fail to adapt continuously to the real-time changes in the tracked ob-
ject, using rather a history of several well-chosen patches or even just the initial
one. In contrast, our method naturally integrates the temporal dimension, by
continuously enforcing the local temporal and spatial object consistency.

discriminative methods [30, 33, 105] on the other hand are classic ap-
proaches, focusing more on changes in the tracked object [29] (background,
distractors, hard negatives), better integrating the temporal dimension [10] in
the method flow. They prove to be robust, but they mostly rely on hand-crafted
observations or modules not trainable end-to-end. SFTrack++ provides an end-
to-end approach while minimizing the distractors and background noise using
the intermediary segmentation map. Our method distances itself from a certain
family of trackers, introducing the space and time consistency endorsement via
clustering component as an additional dimension of the algorithm.

With a few notable exceptions [171, 162], most tracking solutions use inter-
nally hidden layer representations extracted from the previous frame’s rough
bbox prediction [10, 33, 30, 181], rather than a fine-grained segmentation mask
as in our approach. Also, most of them do not take into account multiple
perceptions for the input frame and operate over a unique feature extrac-
tor [30, 198, 9]. There are a few trackers though that combine two models
for adapting to sudden changes while remaining robust to background noise,
by explicitly model the different pathways [10, 15]. In contrast, our end-to-end
multi-channel formulation learns over 10 input channels, a significantly larger
number.

graph representations Images and videos were previously represented
as graphs, where the nodes are pixels, super-pixels, or regions [70]. This choice
directly impacts the running time and performance. Regarding edges, they are
usually undirected, modeled by symmetric similarity functions, but there are
also several works that use directed ones [160, 189].

spectral clustering Basic approaches [125, 113, 90] search for the leading
or the smallest eigenvector for the graph’s adjacency matrix to solve the clus-
ters’ assignments. Spectral clustering was previously used in pixel-level image
segmentation [141], with a high burden on the running time and in building
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space-time correspondences between video patches [70]. Graph Cuts is a com-
mon approach for spectral clustering, having many variations [141, 35, 140].
SFSeg++ Chapter 4 proposes a 3D filtering technique for efficiently finding
the spectral clustering solution without explicitly computing the graph’s ad-
jacency matrix. Inspired by this method, we learn over multi-channel inputs
coming from top trackers output, as an intermediate component in our tracker,
as detailed in Sec. 5.4.

5.4 our approach
phase 1 SFTrack++ algorithm has three phases, as we visually present them
in Fig. 25. In Phase 1, we learn a neural net, NNfeat2seg, that transforms the
RGB and a frame-level feature map extracted using a tracker (e.g. bbox from
a tracker prediction) into a segmentation mask. Using only the RGB as input
is not enough, because frames can contain multiple objects and instances, and
we also need a pointer to the tracked object to predict its segmentation.

phase 2 Next, we run multiple state-of-the-art trackers frame-by-frame over
the input as an online process and extract input channels from them (e.g.
bboxes). We transform those feature maps to segmentation maps with the
previously recalled module, NNfeat2seg. Next, we learn to combine and re-
fine the outputs for the current frame using a spectral solution for preserving
space-time consistency, adapted to learn over multiple channels. Note that,
when applying the spectral iterations, we use a sliding window approach over
the previous N frames in the video volume. For supervising this path, we use
segmentation ground-truth.

phase 3 Finally, we learn a neural net as a bbox regressor over the final
segmentation map from the previous phase, NNseg2box, while fine-tuning all
the other trainable parameters in the model, using tracking GT.

spectral approach to segmentation. We go next through the follow-
ing aspects, briefly explaining the connection between them: segmentation →
leading eigenvector → power iteration → 3D filtering formulation → multi-
channel. Image segmentation was previously formulated as a graph partition-
ing problem, where the segmentation solution [141] is the leading eigenvector
of the adjacency matrix. We used it in a similar way for video segmentation
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in Chapter 4. Power iteration algorithm can compute the leading eigenvector:
xk+1i ←

∑
j∈N(i) Mi,jxkj , where M is the N×N graph’s adjacency matrix, N is

the number of nodes in the graph (pixels in the video space-time volume in
our case), N(i) is the space-time neighbourhood of node i and each step k is
followed by normalization. The adjacency matrix used in power iteration usu-
ally depends on two types of terms: unary ones are about individual node
properties and pairwise ones describe relations between two nodes (pairs).

Following this approach, SFSeg rewrites power iteration using 3D filtering
for an approximated adjacency matrix. The solution is described in Eq. 31:

Xk+1 ← normalized(Sp · (α−11− F2) ·G3D ∗ (Sp ·Xk) − Sp ·G3D ∗ (F2 · Sp ·Xk)+
2Sp · F ·G3D ∗ (F · Sp ·Xk)),

(31)
where ∗ is a 3D convolution with Gaussian filter G3D over space-time volume,
· is an element-wise multiplication, S and F are unary and pairwise terms in
matrix form with p and α controlling their importance, k is the current spectral
iteration and X, S, F matrices have the original video shape (Nframes ×H×W).

multi-channel learning formulation. As we detailed in Chapter 4, SF-
Seg++ extends the single-channel formulation in SFSeg such that it can learn
how to combine several input channels, Si and Fi, for unary and pairwise terms
respectively: Sm ← σ(

∑Ncs
i=1 ws,iSi + bs1), Fm ← σ(

∑Ncf
i=1 wf,iFi + bf1), where

Sm and Fm are the multi-channel unary and pairwise maps, respectively, σ is
the sigmoid function, Ncs and Ncf are the number of input channels, 1 is an
all-one matrix for the bias terms and ws,i,wf,i,bs,bf are their corresponding
learnable weights. We replace S and F in Eq. 31 with their multi-channel ver-
sions Sm and Fm, respectively. We learn ws,i,wf,i,bs,bf parameters both over
segmentation and tracking tasks. More, SFTrack++ can learn end-to-end, from
the original input frames all the way to final output, in the case of end-to-end
learnable feature extractors.

5.5 protocol for experiments
This work was published at the Pre-registration workshop at NeurIPS 2021,

where the format was very interesting. Pre-register
workshop at
NeurIPS 2021

You need to propose an experimental
protocol supporting an technical sound and relevant idea for the field. Than
it has to be validated by a classic double blind peer-review process with a
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rebuttal phase, and next you have 4 months to do the proposed experiments
and submit all the results. For emphasising the need for this kind of review
in the community, focused on the idea and a legit plan for validating it rather
than on the state-of-the-art numeric results, I present the work in the same
format, following its temporal and natural logic.

protocol We test if SFTrack++ brings in a complementary dimension to
tracking by having an intermediary fine-grained representation, extracted over
multiple state-of-the-art trackers’ outputs, and smoothed in space and time. We
guide our experiments such that we evaluate the least expensive pathways first.
For reducing the hyper-parameters search burden, we use AdamW [25], with
a scheduler policy that reduces the learning rate on a plateau. For efficiency
and compactness, we use the same channels to construct both the unary and
pairwise maps: Si = Fi. Their learned weights are also shared ws,i = wf,i.
We use as input channels bboxes extracted with top single object trackers. We
choose 10 top trackers: SiamR-CNN [164], LTMU [27], KYS [10], PrDiMP [33],
ATOM [30], Ocean [198], D3S [105], SiamFC++ [181], SiamRPN++ [93],
SiamBAN [20], which differ in architecture, training sets and overall in their
approaches, but all achieves top results on tracking benchmarks.

training In Phase 1 we train our NNfeat2seg network on DAVIS-2017 [133]
and Youtube-VIS [184] trainsets, for each individual object. It receives the
current RGB and the output of a tracking method (bbox), randomly sampled
at training time. We use the U-Net architecture, validating the right number
of parameters (100K - 1 mil) and the number of layers. We use DAVIS-2017

and Youtube-VIS evaluation sets to stop the training. Following the curricu-
lum learning approach, before introducing tracking methods intro the pipeline,
we use at the beginning of the tracking GT bboxes (extracted from segmenta-
tion GT, as straight bboxes). This allows the NNfeat2seg component to get a
good initialization, before introducing faulty bbox extractors, namely the top
10 tracking methods mentioned before. For Phase 2, we also train for the
segmentation task. We learn the second part of our method to have an in-
termediary fine-grained representation, extracted over multiple channels, and
smoothed in space and time. We validate here Niters, the number of spectral
iterations (1-5). We train on DAVIS-2016 [130] and Youtube-VIS datasets. In
Phase 3, training for tracking, we learn a regression network, NNseg2box (with
50K-500K parameters), to transform the final segmentation to bbox. We train
on TrackingNet [120], LaSOT [42] and GOT-10k [68] training splits.
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baselines comparison Experiment for comparing with other methods fo-
cus on the improvements SFTrack++ could bring over state-of-the-art and other
competitive approaches for general object tracking: single method state-of-
the-art solutions, a basic ensemble over the trackers, SFTrack++ applied only
over the best tracker, SFTrack++ applied over the basic ensemble and the best
learned neural net ensemble we could get out of several configurations (2D
and 3D versions for U-Net [138] and shallow nets, having a different number
of parameters: 100K, 500K, 1 mil, 5 mil, 15 mil). All methods receive the same
input from top 10 trackers and train on TrackingNet, LaSOT and GOT-10k train
sets as previously described. We evaluate our solution against all baselines on
seven tracking benchmarks: VOT2018 [81], LaSOT, TrackingNet, GOT-10k,
NFS [49], OTB-100 [179] and UAV123 [118]. For the main conclusion of this
chapter, we will provide statistical results (mean and variance over several
runs) to better indicate a strong positive/negative result, or an inconclusive
one.

ablative studies We vary several components of our end-to-end model
to better understand their role and power. We train our Phase 1 component,
NNfeat2seg net, not only for bbox input features but also for other earlier fea-
tures, extracted from each tracker architecture. We test the overall tracking
performance for this case. We remove from the pipeline the spectral refine-
ment in Phase 2 and report the results. We test the performance of our tracker
without the Phase 3 neural net, NNseg2box, by replacing it with a straight box
and rotated box extractors from OpenCV [12]. We test several losses to opti-
mize for both segmentation and tracking tasks: a linear combination between
the weighted diceloss [151] and binary cross-entropy, Focal-Tversky [1], and
Focal-Dice [170]. For the ablative experiments, we evaluate only on OTB100,
UAV123, and NFS30 tracking datasets.

5.6 experimental results
comparison with other methods In Tab. 12 we present the results of
our method on five tracking benchmarks: OTB100, UAV123, NFS30, GOT-10k,
and TrackingNet, comparing it with other top single methods and ensemble
solutions. For single methods, we take into account each input method in our
SFTrack++: D3S, SiamBAN, ATOM-18, SiamRPN++, PrDimp-18. We chose
only one lightweight configuration per tracker, common across all benchmarks.
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Method OTB UAV NFS GOT-10k TrackingNet
AUC AUC AUC AO SR50 SR75 Prec Precnorm AUC

Si
ng

le
M

et
ho

d D3S [105] 57.7 45.0 38.6 39.3 39.0 10.1 52.2 67.9 52.4
SiamBAN [20] 67.6 60.8 54.2 54.6 64.6 40.5 68.4 79.5 72.0
ATOM-18 [30] 66.7 64.3 58.4 55.0 62.6 39.6 64.8 77.1 70.3

SiamRPN++ [93] 65.0 65.0 50.0 51.7 61.5 32.5 69.3 80.0 73.0
PrDimp-18 [33] 67.6 63.5 62.6 60.8 71.0 50.3 69.1 80.3 75.0

En
se

m
bl

e Basic (median) 66.6 60.8 55.5 54.7 63.9 31.6 69.0 80.0 73.9
Neural Net 71.3 59.7 58.2 59.5 69.8 42.9 70.6 80.2 74.5
SFTrack++ 70.3 61.2 62.4 62.0 73.3 47.8 71.9 81.9 76.1

std ± 0.5 ± 0.2 ± 0.1 ± 0.7 ± 0.5 ± 1.1 ± 0.3 ± 0.3 ± 1.0

Table 12: Comparison on 5 tracking benchmarks. In the first group we show individ-
ual methods, used as input for our SFTrack++. In the second one, we show
ensemble methods: a basic (median) and a neural net model with a simi-
lar number of parameters like SFTrack++. Our method outperforms both
the input or other ensemble methods by a large margin on the challenging
benchmarks GOT-10k and TrackingNet, while obtaining competitive results
on OTB, UAV, and NFS. For SFTrack++ we report mean and std when train-
ing the model from scratch three times. With red we represent the best single
method in the column and with blue the best ensemble. The raw results are
available in the supplementary material.

For ensembles we use 1) a basic per-pixel median ensemble followed by the
same bounding box regressor used in all experiments (see Sec. 5.6.1) and we
also trained a more complex one: 2) a neural net having an UNet architecture
(with 5 down-scaling and 5 up-scaling layers) and a similar number of param-
eters like SFTrack++ (≈ 4.3 millions). We observe that the variation across
different runs (including training from scratch) of our method is very small,
showing a robust result and a clear conclusion. On newer, larger, and more
generic datasets like GOT-10k and TrackingNet, our method surpasses others
by a large margin, while on OTB100, UAV123, and NFS30 it has competitive
results.
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Figure 26: Qualitative results. We compare in the first line SFTrack++ with the input
from individual methods. In the second line, we show the ground truth
(in orange) and ensemble methods results that receive the same input as
SFTrack++. We notice that even though the other ensembles fail to find
a good bounding box, SFTrack++ manages to combine the input methods
better, even in cases with a high variance among input methods.

ablation studies To validate the components of our method, we test in
Tab. 13 different variations, reporting results on OTB100, UAV123, and NFS30.
First, we remove the spectral refining component from phase 2, taking out the
temporal dependency and leaving the per frame predictions independent. In
the next experiment, we remove the neural net from phase3 NNsegm2bbox. In
the next chunk, we investigate the number of input methods. Last, we vary the
number of spectral iterations from phase 2. The conclusions from this wide
ablation are the following: 1) the spectral refining component is very impor-
tant, emphasizing the initial intuition that preserving the object consistency in
space and time using our proposed spectral approach improves the overall per-
formance in tracking. 2) The quality of the input in our SFTrack++ method is
important, but the more methods we use, the better. 3) We obtain better results
using only one single spectral iteration. We tried the loss functions mentioned
in the protocol, but we did not see relevant variations in IoU for the validation
set, so we settle to BCE.

qualitative results Since SFTrack++ is an ensemble method, we show in
Fig. 26 difficult cases and how it compares with individual methods and with
other ensembles, starting from the same input (namely, all single methods from
the first line, as explained in Sec. 5.6). We see how our method outperforms the
others, even in those hard cases where an agreement seems hard to achieve.
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SFTrack++ variations OTB UAV NFS OTB+UAV+NFS

w/o Spectral Refinement (phase two) 71.6 60.5 60.9 64.0
w/o NNsegm2bbox (phase three) 65.5 57.4 58.5 60.2

Median (over 5 methods) as input 70.8 60.8 60.0 63.7
Best method (PrDimp-18) as input 67.1 59.7 61.3 62.5
Top 3 methods as input 64.8 60.8 61.1 62.1

2 spectral iterations 70.3 60.9 61.8 64.1
3 spectral iterations 68.0 61.0 60.1 62.9

SFTrack++ (1 iter, 5 methods) 70.3 61.2 62.4 64.5

Table 13: Ablations on OTB100+UAV123+NFS30 benchmarks. In the first group we
remove from the pipeline phase 2 and phase 3, respectively. The results
show that both components are crucial for the method. Next, we vary the
number of input methods (1 to 5) but also their quality (best or median). We
see that even the quality of the input matters, using more methods as input
improves the overall performance. In the last part, we validate the number
of spectral iterations, a single iteration achieving the best score, which slowly
degrades over more iterations.

5.6.1 Documented modifications

There were several aspects where we need to deviate from the original proto-
col. Those aspects did not affect the core proposal and were mainly motivated
by making the experiments less expensive in terms of computational cost, as
detailed below.

number of benchmarks and input trackers For each input tracker
method considered, we run it in advance on all benchmarks (on training, valid,
and test splits) to generate pre-processed input. We also generate the ground-
truth bounding box segmentations for all benchmarks. This speeds up our
training, making the overall training and testing self-contained, independent
w.r.t. the input methods’ code. We drop out the VOT2018 benchmark because
its evaluation protocol consists of running a tracker on sub-videos, therefore we
should have run all the input trackers code online, and this would have been
too time-consuming. We resized each frame to keep its aspect ratio, having its
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maximum dimension of 480 pixels. For training, for each video in the tracking
benchmarks, we used only a sample with 5 frames. The pre-processed data
for one single tracker, on segmentation and tracking benchmarks, for training,
valid, and testing splits takes ≈ 1 TB (without LaSOT). Since LaSOT has a very
large number of frames, we decided to drop it out to make the experiment
time manageable. We considered that if we test our proposal on 5 trackers
and 5 benchmarks, our core concept of the proposal would not be affected and
the results would be sufficiently general and conclusive. We chose the 5 track-
ers (out of the 10 in the proposal) that were the easiest to integrate with the
PyTracking [28] framework.

NNfeat2segm module. Since the considered trackers were very different, we
couldn’t find a proper way to extract similar features from each tracker model
and we decided to drop this ablation.

bounding box regression For extracting the bounding box coordinates
out of the segmentation mask we use in all our experiments the region pro-
posal from scikit-learn [161], with a 0.75 threshold for binarization. We did not
perform an ablation study on bounding box regression because this would not
be our contribution and did not influence our core proposal, this solution for
bounding box regression being good enough to emphasize what we followed
in our approach.

5.7 conclusion
The pre-registered hypotheses that SFTrack++, our spectral approach that

improves the space-time consistency of an object, improves the tracking perfor-
mance proved to be valid.

Our method is not choosing the best input method, but it learns how to
combine all inputs towards a superior performance, not only w.r.t. each input,
but also w.r.t. a basic and a learned ensemble solution. SFTrack++ is robust,
with a very low variance when re-training the entire pipeline from scratch, as
shown in Tab. 12. We also noticed that the output of our method is very bold
and it does not depend on a carefully chosen threshold. In Tab. 13 we show
the importance of integrating the spectral clustering module in our SFTrack++
algorithm.
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As a side observation, SFTrack++ has a weak performance on very small
tracked objects when compared with single methods (UAV videos), but when
compared with other ensembles, it achieves top results. This might be due to
the large variance in the chosen individual methods predictions for the small
objects.

In conclusion, SFTrack++ pre-registered proposal hypothesis validates through
the proposed experimental protocol, with clear positive results.

Next in the thesis I will go beyond tracking and segmentation, and I show
that having multiple intermediate representation working towards a selection
based consensus improves each of the representation. Having this in mind, we
show in the next chapter that this is a valid hypothesis in 2D space. As fu-
ture work, I propose a spatio-temporal model to integrate in the multi-task
graph also temporal nodes, searching to achieve cross-task consensus over
space-time dimensions, using only supervision from expert models and im-
prove over them.



6

B E YO N D S E G M E N TAT I O N
A N D T R A C K I N G : TO W A R D S
C O N S E N S U S I N
M U LT I -TA S K G R A P H O F
E X P E R T S

Babies learn with very little supervision by observing the surrounding world.
They synchronize the feedback from all their senses and learn to maintain con-
sistency and stability among their internal states. Such observations inspired
recent works in multi-task and multi-modal learning, but existing methods
rely on expensive manual supervision. In contrast, our proposed multi-task
graph, with consensus shift learning, relies only on pseudo-labels provided by
expert models. In our graph, every node represents a task, and every edge
learns to transform one input node into another. Once initialized, the graph
learns by itself on virtually any novel target domain. An adaptive selection
mechanism finds consensus among multiple paths reaching a given node and
establishes the pseudo-ground truth at that node. Such pseudo-labels, given
by ensemble pathways in the graph, are used during the next learning iteration
when single edges distill this distributed knowledge. We validate our key con-
tributions experimentally and demonstrate strong performance on the Replica
dataset, superior to the very few published methods on multi-task learning
with minimal supervision.

6.1 zooming out: generalize from two to mul-
tiple tasks

The previous chapters show the importance of the consensus in tracking,
next to the natural, yet efficient, approach for better connecting the time and
space when segmenting objects, iteratively reaching the agreement. Then we

E. Haller, E. Burceanu, M. Leordeanu, Self-Supervised Learning in Multi-Task Graphs through
Iterative Consensus Shift, The British Machine Vision Conference (BMVC) 2021
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emphasize the need of having the segmentation as an intermediate task in
tracking. In this chapter, we dive more in the direction of having multiple
tasks and shifting iteratively towards their consensus. The proposed solution
here focuses only on the spatial aspect of the predictions, all consensual results
being based on per-frame decisions. We plan to further develop this multi-task
graph solution over time, as detailed in future work, Chapter 7. We analyzing
this chapter following the key aspects introduced at the beginning of the thesis:

• A. Space-time consistency: Not yet. The multi-task graph solution in
this chapter contains only per-frame tasks, without having the temporal
dimension. We will approach the temporal dimension of the graph in
future work.

• B. The power of the consensus: The participants and the process vary at
multiple levels, bringing in a lot of advantages of combining independent
aspects:

– different architecture/complexity: simple/similar edges and com-
plex experts

– different training datasets/knowledge of the world/data distribu-
tion

– different semantic level of the domains: simple edges vs complex
segmentation

– multiple-paths for consensus

• C. Exploiting multiple intermediate representations: This is the focus of
this approach, exploiting multiple domains (13 different tasks), reaching
a more powerful consensus.

• D. A limited quantity of supervision: This is also one major point of
the approach, using only pre-trained experts as ground-truth, which we
outperform through iterations both with individual models and in con-
sensus. The approach is unsupervised from the destination task point of
view.

• E. Experts: Making use of existing models: Figuring out an appropri-
ate consensus algorithm based on selection allows us to use multiple ex-
perts. These experts contain knowledge from multiple datasets (diverse
even from the task point of view) and in-depth knowledge from multi-
ple research groups like the model architecture, training, optimization
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tricks, and task formulation, gathered over a long period. We use them
as initialization for the tasks’ labels in the graph, overcoming their initial
performance, over multiple iterations.

6.2 context
Seeing the world from multiple perspectives and with different interpreta-

tions offers an invaluable source of information, as shown by works using var-
ious features extractors [6, 100, 58, 187] or multiple supervised tasks [26, 191].
While the multi-tasks approaches attain a more comprehensive and fundamen-
tally better understanding of the visual scene than the single-task ones, they
require a larger amount of labeled data for the same input.

Our proposal for satisfying the unlabeled data problem, different from cur-
rent multi-modal [132, 129] and multi-task-graph approaches [92, 190], is to
take advantage of the existing pre-trained experts, on many different tasks in
the state-of-the-art literature and offer a principled way to learn unsupervised
on novel target domains, by using their selective consensual knowledge within
a graph neural structure. Each node in our graph represents a specific inter-
pretation or task. Each graph edge is a neural net that transforms one task into
another. Pseudo labels for a given task are obtained by combining all pathways’
outputs reaching the corresponding node. Very different from the recent NGC
model [92]), we connect all tasks with neural networks and do not need any
labeled data on the target domain. The experts we start with can be pre-trained
independently on any, potentially very different, datasets. Also, different from
the recent [92, 190], we show that an intelligent consensus-finding selection
procedure is required to create strong pseudo-labels from many unsupervised
pathways that could lead to a significant improvement over the initial experts.
The unsupervised, consensus-based learning process continues for several it-
erations of the graph, with experimentally provable improvements from one
iteration to the next. Our key contributions that are theoretical, as well as
experimental, are:

1. We introduce iterative Consensus Shift (CShift), an algorithm for unsu-
pervised multi-task learning on novel target domains, applied to neural
graph models. CShift exploits, using an intelligent selection procedure,
the consensual agreements among multiple graph pathways, where each
path transforms differently an input task into another. These ensembles
of pathways become powerful unsupervised teachers in the multi-task
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Learning on
target domain

Uses
ensem.

Ensemble as
supervision

Selection
in ensem.

Unsup.
domain adapt.

Full
graph

XTC [190] sup. 7 N/A N/A 7 X

NGC [92] semi-sup. X X 7 7 7

CShift (ours) unsup. X X X X X

Table 14: Main differences between our CShift algorithm and state-of-the-art methods
for learning in Multi-Task Graphs.

XTC: inference-path invariance

trained to be consistent with 
 any path: . . .

Selection 

Ensemble

Mean

Ensemble
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edge

edge
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are results of similar ensembles 

from previous step

SelectionEnsemble( 
)

Figure 27: Illustration of the different training strategies employed by Multi-Task
Graph methods in comparison to our approach (CShift).

graph, on novel target domains. The learning process continues over
multiple graph iterations. After each iteration the pseudo-labels at every
node, given by the consensual output at that node, shift, thus departing
from and improving over the initial experts.

2. We show in extensive experiments on a recent multi-task dataset that
CShift learns unsupervised to self-improve, over multiple tasks, from one
iteration to the next, while also significantly outperforming the state-of-
the-art experts used to generate the first pseudo-labels.

6.3 relation to prior work
Relation to Ensembles and Experts. The idea of different paths working to-
gether to reach a common goal was frequently demonstrated [139] over time.
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Our solution is related to the idea of guiding the learning process using a set
of expert models, an approach that proved effective for instance for tasks like
video and image retrieval [38, 100, 115, 117].

relation to unsupervised representation learning. Recent formu-
lations use pretext tasks [52, 195, 116, 194], clustering [17, 193, 158], minimize
contrastive noise [57, 114, 155] or are based on generative adversarial models
[36]. Different from these methods, we use as pseudo-ground truth the consen-
sual output over multiple paths reaching the same task.

relation to multi-modal learning. Several recent works combine modal-
ities and tasks. Different from the method in [132], using multiple modal-
ities for predicting multiple tasks, we rely on the complex interactions be-
tween tasks’ output domains, modeled as a bidirectional graph. Different from
GDT [129] or GDT-related methods using multi-modal data transformation as
self-supervision [154, 114], we learn complex interactions between tasks with-
out ground truth, relying only on consensus and selection as supervision.

relation to multi-task learning. [191] studies the underlying connec-
tions between different tasks and proves that such relations can be exploited
to effectively reduce the labeled data required for training. Different from
XTC [190], we assume no multi-task annotated data on the target domain
and rely solely on per-task expert models, pre-trained on different domains
to provide the initial pseudo-labels. Moreover, the consensus shift method
learns completely unsupervised on the target domain, relying solely on selec-
tion and consensus over multiple pathways reaching a given task node, over
multiple graph iterations. From the architectural point of view, our model is
related to the recent Neural Graph Consensus (NGC) model [92], which also
connects multiple interpretations and tasks into a single graph of neural net-
works. Our model differs from NGC in four essential aspects: 1) the proposed
selection mechanism is highly adaptive (different for each pixel, sample, and
iteration), allowing a dynamical adjustment of the graph structure as detailed
in Sec. 6.4.2 and Fig. 29, compared with the simple average in NGC; 2) our
fully connected graph guides the learning process only based on unsupervised
consensus, as opposed to having a fixed, pruned architecture based on super-
vised data (NGC); 3) we use the ensemble labels both as a supervisory signal
at a node and as input for all its out-edges, making learning more efficient;
4) we initialize the graph with pseudo-labels generated by out-of-distribution
experts, while NGC assumes a fully supervised initialization.
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In Tab. 14 and Fig. 27 we summarize the main differences between CShift
and the recent XTC [190] and NGC [92].

6.4 our approach
We propose a novel Multi-Task Graph (Fig. 28-B) and the learning CShift

algorithm, which uses as supervision the consensual output, extracted through
an intelligent selection procedure, over multiple graph pathways that reach a
given node. As mentioned previously, each node in the graph represents a
task, a view, or an interpretation of the world. Each edge is a neural net that
transforms one task at one node into another, from a different node. Our graph
is directed and fully connected. In Fig. 28 we illustrate the main steps of our
approach. All edges of our graph are initially trained using pseudo-labels
for nodes, generated by out-of-domain experts. After initializing the edges
(Fig. 28-A), we introduce the view associated with a node, computed as the
ensemble result of all the node’s in-edges. These views will become the pseudo-
ground truth labels, during the subsequent learning iterations in the graph and
constitute a major difference between our model and both the recent XTC and
NGC models. The views (pseudo-labels), will shift from one learning iteration
to the next, using the CShift learning algorithm, described next in more detail.
CShift uses the views at each node, transmits information through the out-
edges towards other nodes, and also collects the information from the in-edges,
in order to create the new views, at the next iteration, by a selection mechanism
that establishes the consensus over the multiple incoming edges. The process
is repeated in principle until an equilibrium is found, at convergence. It should
be clear at this point that the iterative graph learning phase is unsupervised
and that the initial experts used could be created completely independently,
using information from other datasets and domains, as our experiments will
show. In Fig. 28-C we present a visual scheme of CShift, while in Alg. 5 we
state its main formalized steps.

6.4.1 Multi-Task graph

We formally define the Multi-Task Graph over a set T of tasks (e.g. semantic
segmentation, single-image depth estimation, surface normals - Sec. 6.5), each
illustrating a different view of the scene. There are one-to-one correspondences
between graph nodes and the set of tasks, and each edge is an encoder-decoder



6.4 our approach 102

Algorithm 5 - CShift: Multi-Task Graph Learning with Consensus Shift
Xi - input data sample i, all tasks Yi;d - pseudo-label for data sample
i, task d
Expertd - expert for task d es→d - NN edge from task s to task
d

niters - number of CShift iterations T - the set of all tasks
part1..niters - training dataset split, with niters parts, one for each iteration

Results: 1) CShift node views Yi;d; 2) all trained edges es→d

// Use the experts to generate the initial pseudo-labels
1: Yi;d ← Expertd(Xi) ∀d ∈ T ,∀i ∈ part1
2: for k← 1 to niters do
3: for all d ∈ T do

// Update views using previous pseudo-labels
4: Xi;d ← Yi;d, ∀i ∈ partk

// Learn from pseudo-labels
5: train es→d ∀s ∈ T , ∀ samples ∈ {(Xi;s,Xi;d)|∀i ∈ partk}
6: for all i ∈ partk+1 do

// Compute neighbourhood for task d
7: N(Xi;d)← {es→d(Xi;s)|∀s ∈ T }∪ {Xi;d}

// Generate new pseudo-labels
8: Yi;d ← f(N(Xi;d), Wi;d)

neural net transformation between source and target task nodes (Fig. 28-A).
Consequently, our graph G = (T ,E) with E = {es→d|es→d(Xs) = Xd, s,d ∈ T , s 6=
d}, where Xs is the scene representation under task s, and es→d is the neural
network transforming the view between source task s and destination task d.
The graph edges are initialized using pre-trained expert teachers, one for each
considered task.

passing an image through the graph: given a raw rgb frame, we asso-
ciate it to the rgb node. Next, we aim to enforce the consensual constraint in
the graph: no matter what path the input rgb takes through the graph, being
transformed from one node to the next, it should have the same representation
(view) at the same final node.
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Figure 28: Main architectural elements of our Consensus Shift (CShift) system. A.
Initialization from expert models. Based on the rgb image, the experts
(which are considered as black boxes in our system) predict the initial
pseudo-labels for each considered task. We emphasize that the experts are
trained on different distributions than our target domain. B. Illustration of
the fully-connected Multi-Task Graph, with 13 nodes corresponding to the
13 considered tasks. The edges are transformations between their source
and destination tasks/nodes. C. The iterative process of CShift. Given the
pseudo-labels for all tasks, we train each graph edge. Further, for each
node, we compute its new pseudo-labels as the consensual representation
of its in-edges, through the selection ensemble mechanism. The newly com-
puted labels of a node become its supervisory signal in the next iteration.
They also become inputs for all the out-edges of the node.

initializing the graph: Other approaches [92, 190] start with a supervised
training phase of all the out-edges of the rgb node {ergb→d|∀d ∈ T }, requiring
multi-task annotated datasets. As we work in the unsupervised regime for the
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target domain, our initial views (pseudo-labels) for different tasks are obtained
from a set of out-of-distribution expert models (Fig. 28-B). Each task node d has
an associated expert: Expertd. Then the initial edges are trained by distilling
the knowledge of the experts (see the list of experts in Sec. 6.5).

6.4.2 Consensus Shift learning

The consensus between edges reaching a given task d provides a robust view
for d. With each learning cycle, the node values (pseudo-labels) shift towards
stronger consensus, following the CShift algorithm (Alg. 5). The new labels are
then used to distill the single edges connecting them and thus set up the next
learning stage. Each transformation is, in fact, the last step of a longer graph
path, starting in the rgb node and ending in a destination node d. All paths
should ideally be in consensual agreement, but in practice, they are not, so
an intelligent mechanism is needed to extract the robust knowledge shared by
the majority. We employ the discovery of consensus among multiple outputs
from incoming edges. Intuitively, CShift is an adaptive combination (weighted
median) over the output of all edges reaching a destination. It is based on
a similarity measure between those views, computed at pixel-level using a
distance function between pairs of views coming from different source tasks
and using a kernel to smooth over the neighboring pixels.

Given a destination node d, all edges reaching this node {es→d|s ∈ T , s 6= d}

are transformations of the source tasks. Considering a sample Xi, CShift itera-
tively updates the sample’s view, associated with task d, Xi;d. We next define
N(Xi;d), the neighbourhood of Xi;d as the set of all transformations from all
different views of the sample, towards the destination, joined with the current
pseudo-label:

N(Xi;d) = {es→d(Xi;s)|∀s ∈ T }∪ {Xi;d}. (32)

The current task representation is replaced by the consensual one, computed
as a function f gathering information from all the neighbours of Xi;d, parame-
terized by pixel-level weights Wi;d ∈ Rh×w×|T | (where (h,w) is the image size):

Xi;d ← f(N(Xi;d); Wi;d), (33)

capturing the consensus between predictions. Wi;d has a channel associated
with each task node, which indicates the similarity of the corresponding pre-
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diction with the current value of d. For a location (x,y) and a given task s, the
weights are computed as follows:

Wi;d[x,y, s] =
K(dist(es→d(Xi;s),Xi;d)[x,y])∑
Z∈N(Xi;d)

K(dist(Z,Xi;d)[x,y])
, (34)

where dist : Rh×w → Rh×w is a distance function capturing the similarity be-
tween two different prediction maps and K : R→ R is the kernel function that
determines the weight of nearby points. The algorithm aims to identify the ar-
eas of the prediction maps that are perceptually similar and push them further
in the ensemble while downgrading regions that seem to be noisy and uncor-
related with the other predictions. We propose a selection ensemble algorithm
that automatically extracts the most representative consensual representation
of the in-edges. The adaptive per-pixel weighting allows CShift to keep the
most relevant information from all input maps, even when some maps are less
reliable, treating similarities per region (kernels at pixel-level). In Sec. 6.5.1
we instantiate dist,K, f and provide ablations experiments proving that the se-
lection strategy is robust to noisy connections. We show in Fig. 29 how the
selection based consensus works at pixel-level.

6.4.3 Unsupervised domain adaptation

CShift requires no human-annotated data for the target domain. We take
advantage of existing state-of-the-art expert models that distill research years
and valuable expertise and provide reliable pseudo-labels for each of the con-
sidered tasks. When applied to novel domains, the weakness of these experts is
that they are trained on different, out-of-domain distributions. We first transfer
their knowledge in our graph edges. Then our learning method, by exploiting
and enforcing the overall consensus among all tasks, allows the graph to adapt
by itself to the target domain, thus overcoming the domain gap, as shown in
our tests (Sec. 6.5.2 and Sec. 6.5.3). To emphasize the domain adaptation ca-
pabilities of CShift, we employ the Maximum Mean Discrepancy [55] (MMD)
method for measuring the domain dissimilarity between our target domain
and the expert source domains. MMD is a strong and widely used [78, 101, 182]
non-parametric metric for comparing the distributions of two datasets. We fol-
low the methodology in [55] and compute the unbiased empirical estimate of
squared MMD. Our experiments show (Sec. 6.5.2) that there is a large distribu-
tional shift between our target domain and the domains of the original expert



6.5 experimental analysis 106

Iteration 2
Selection
Ensemble

based on LPIPS
Neural Net or others

(see Tab. 2)

11 x 11 pixels

pseudoGT

rgb

NN edges

depth

sem.
seg.

1 pixel 1 pixel

per-pixel
weights

X

central
pixel

X

X

X

1 pixel

(0.4, 0.3, ..., 0.2)

(0.2, 0.1, ..., 0.5)

(0.2, 0.2, ..., 0.3)

(0.1, 0.1, ..., 0.5)

Adaptive weights
over pixels, samples, and iterations

Selection Ensemble

...

adaptive weights
computation

256 x 256

Selection
Ensemble

re-train edges

f

normals zoom in

(0.1, 0.1, ..., 0.3)

(0.1, 0.4, ..., 0.4)

(0.5, 0.1, ..., 0.1)

(0.3, 0.2, ..., 0.4)

:

:

:

:

Iteration 1... ... ...

ensemble
result

: 

: 

: 

: 

RGB depth edges halftone sem. seg. grayscale hsv cartoon edges l edges m edges s super-pixel pseudoGT

C
Sh

ift
w

ei
gh

ts
C

Sh
ift

pr
ed

ic
tio

ns

ENSEMBLE

Figure 29: CShift selection flow, stripped down to pixel-level. The complex weights
are highly adaptive, modifying, in effect, the underneath graph structure
through their values. The last two rows show CShift per-pixel weights and
the corresponding predictions from source tasks to normals task destina-
tion. Note how the sharp zones correlate with high ensemble weights.

models. This result, along with the results in Sec. 6.5 prove the unsupervised
domain adaptation capabilities of our method.

6.5 experimental analysis
Dataset. We perform experiments on Replica [177], a dataset of photo-realistic
3D indoor scenes, comprising 18 scenes, with a total of 48 rooms. In practice,
we consider two iterations for training our Multi-Task Graph and use two unsu-
pervised train sets (9600+9600 samples), two validation sets (960+960 samples),
and a test set of 960 samples (never seen during the unsupervised learning pro-
cess). During training and validation, only the raw rgb images are available.
Ground truth is used only for evaluation on the test set.

expert models. We employ per-task expert models, with input rgb only,
trained on out-of-domain data, to initialize the per-node pseudo-labels (Fig. 28-
A). Conceptually, in the first learning iteration, the experts replace the direct
edges starting from the rgb node. Then, the computed views of a node become
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supervisory signals for the in-edges of that node and inputs for the out-edges
(e.g. for training edge edepth→halftone, the depth input is obtained by applying
the depth expert over the rgb frame and the halftone pseudo-label by extracting
the halftone from rgb.)

Our graph contains a total of 13 task nodes, including the rgb one, thus we
consider 12 experts ranging from trivial color-space transformations to heavily
trained deep nets: 1) halftone computed using python-halftone; 2) grayscale
and 3) hsv computed with direct color-space transformations; 4) depth and 5)
surface normals obtained from the XTC [190] experts; 6, 7, 8) small, medium
and large scale edges extracted using a Sobel-Feldman filter [43], and more
complex 9) edges extracted using the DexiNed [149] expert; 10) super-pixel
maps extracted using SpixelNet [183]; 11) cartoonization got from WBCar-
toon [175] and 12) semantic segmentation maps computed with HRNet [167].
The deep nets expert models are trained on a large variety of datasets: 4) and
5) Taskonomy [191], 9) BIPED [150], 10) SceneFlow [112] + BSDS500 [4], 11)
FFHQ [73], 12) ADE20k [199]. Note that these datasets are built for a different
purpose and has a different distribution than our domain.

We evaluate our model on two tasks: depth and surface normals predic-
tions from rgb. The XTC experts’ output on depth and normals tasks are not
aligned with annotations from Replica as their original datasets use different
conventions. Thus, on depth, following the methodology of self-supervised
methods [200], we performed a histogram specification alignment between ex-
pert results and ground truth annotations. On normals, we removed the 3rd
channel in the XTC expert according to Replica, which has normals with only
2 independent channels.

implementation and training details. Each graph edge is a neural
network with a UNet architecture, as previously validated in NGC [92] and
XTC [190]. All 156 graph edges have ≈ 4.3 million parameters, with 4 down-
scaling and 4 up-scaling layers and a proper number of input and output chan-
nels, depending on the source and destination tasks. We optimize them by
jointly minimizing L2 and the Structural Similarity Index Measure [176] (SSIM)
losses for regression tasks equally-weighted for each neural net. For training
edges going to classification tasks (semantic segmentation or halftone), we use
Cross-Entropy loss. As optimizer we work with SGD with Nesterov (lr=5e-2,
wd=1e-3, momentum=0.9), and a ReduceLRonPlateau scheduler (patience=10,
factor=0.5, threshold=1e-2, min lr=5e-5). Models are trained for 100 epochs
during the first iteration, with 9600 training samples. For the second iteration,
we perform 100 additional training epochs on both train sets, reaching a total
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Method depth normals rgb

Expert [190] 14.58 8.30 -
Mean Ensemble [92] 12.94 7.95 4.30

CShift w/ Variance 12.80 7.91 2.12

CShift w/ PSNR 12.89 8.12 4.25

CShift w/ SSIM 12.80 7.89 2.38

CShift w/ L1 12.81 7.73 2.16

CShift w/ L2 12.79 7.72 2.45

CShift w/ LPIPS 12.77 7.61 2.06

Table 15: Ablation study on different distance metrics on Replica dataset, for the first
iteration. In all considered configurations CShift overcomes the initial expert
models and in all, except the PSNR case, the Mean Ensemble.

of 19200 training samples. Note that for the second iteration, we train all edges
from scratch. For readability, all reported scores in tables are the L1 value
×100.

6.5.1 Consensus Shift

ensemble selection method. At the core of the selection procedure is the
distance function dictating each prediction map’s per-pixel weights, as detailed
in Sec. 6.4.2. In experiments, we instantiate f (Eq. 33) to the weighted median,
and for the kernel function K (Eq. 34) we use the identity. We consider different
distance metrics, ranging from local per-pixel distances to global perceptual
measures, to understand the proposed selection strategy’s power: 1) L1 and
2) L2 distances at pixel-level 3) Peak signal-to-noise ratio (PSNR) to measure
the noise of the predictions; 4) Structure Similarity Index Measure (SSIM) [176]
that analyses the luminance, contrast and structural differences; 5) Learned
Perceptual Image Patch Similarity (LPIPS) [196] that is a deep model trained to
identify perceptually similar images. We also consider the 6) per-pixel variance
among the multi-path predictions, to quantify their consensus.

In Tab. 15 we present the results of CShift under different selection strate-
gies, for the first iteration. We compare our method against the expert models
used to generate the initial pseudo-labels and with a baseline mean ensemble
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Figure 30: Our selection ensemble is stable under different node selection strategies. It
proves its ability to extract relevant information even from low-performing
edges, as the performance slightly increases with each new node and its
corresponding edge, irrespective of the edge performance. For the mean
ensemble, we observe an unstable evolution under the random node selec-
tion strategy and a performance decrease when low-performing edges are
added to the ensemble in the case of performance-based selection.

model, which is similar to some extent to [92], as our models are only trained
using the expert models while NGC[92] employs a supervised initialization
step. Our proposed selection ensemble overcomes the expert models in all the
considered configurations while overcoming the simple mean ensemble in all
setups except for the PSNR configuration, a combination that is slightly worse
for the normals task. CShift w/ LPIPS is our top-performing configuration,
but all the other metrics prove reliable for the selection ensemble, highlighting
its importance in the unsupervised learning process. For all the subsequent
experiments, we use CShift w/ LPIPS as our default configuration. Besides
depth and normals, we also report the results for the rgb task, measuring the
graph model’s ability to reconstruct its original raw input from the ensemble
results of its many paths.

consensus under different sets of nodes. To validate that our model
is robust to the set of the considered nodes (and their corresponding in and
out edges), we perform an experiment where we start with a small graph con-
taining only two nodes, and, step-by-step, increase the number of nodes until
reaching all 13 nodes. The nodes are added to the graph in a specific order. We
analyze two ways of establishing this order: 1) random - nodes are randomly
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Figure 31: The first plot shows that the average variance over single edges in an en-
semble decreases over the training epochs and iterations. Thus, the graph’s
average consensus improves from one learning iteration to the next, while
the average L1 error of edges decreases (second plot). This proves the
CShift approach’s effectiveness and validates that the edges evolve towards
the ground truth rather than collapsing in trivial solutions.

sorted; 2) performance-based - nodes are sorted according to their individual
performance (evaluated w.r.t. to ground truth annotations) and added in this
order. In Fig. 30 we present the results of our experiment, comparing CShift
with a mean ensemble baseline, for two destination tasks: depth and normals.
In both scenarios, the performance of CShift increases with the number of
nodes, proving that our ensemble selection mechanism is able to extract rele-
vant information even from low-performing edges. We significantly overpass
the baseline in all configurations. We highlight the performance fluctuations
of this baseline that seems to be highly dependent on the performance of the
individual edges reaching the ensemble. Our solution is stable even under a
random node selection strategy.

edges improvement between iterations. We give an in-depth analy-
sis of how individual edges evolve over training epochs and CShift iterations.
First, in Fig. 31-a, we see how the variance between the edges in an ensem-
ble (reaching depth or normals task) decreases with more training. This is
natural since each edge in the ensemble uses the same pseudo-ground truth
annotations. But, in the second iteration, the variance is even smaller, showing
a smoother training optimization for the edges (which are trained from scratch
for this second iteration). This could be explained by the new pseudo-labels



6.5 experimental analysis 111

Figure 32: We present the relative performance improvement of the individual edges
between iterations. The performance of each edge increases up to almost
12%, proving the capacity of CShift to iteratively adapt to the new domain,
in an unsupervised manner.

coming from iteration 1 ensembles, rather than experts, making the training
process simpler. Next, to validate that the edges do not collapse to a bad rep-
resentation, we also plot the average L1 error in Fig. 31-b, confirming that all
the edges improve their performance towards the ground truth. In Fig. 32 we
show those relative improvements per edge, between the two CShift iterations.

6.5.2 Domain adaptation

Here we look closer at the gap between the input distribution on which the
depth and normals experts were trained on, and the one for our training and
testing dataset, Replica. The experts for these two tasks [190] are trained on
the Taskonomy dataset, a real-world dataset. Replica is a synthetic one, and to
validate our experiments, we add another synthetic dataset to the comparison:
Hypersim [137]. We compute the discrepancy in distribution between Replica
and those datasets, using MMD as described in Sec. 6.4.3. The analysis was
performed both for the input level and the expert’s mid-level features. For
computing MMD, we average over multiple runs, each containing 100-1600

samples per dataset. The results in Tab. 16 show that there is a significant
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rgb depth normals

MMD(replica1, replica2) 5.4 17.8 17.4
MMD(replica1, hypersim) 3.4 20.1 20.6
MMD(replica1, taskonomy) 13.1 23.3 20.2

Table 16: We report the MMD between our target domain (Replica dataset) and the
domains of the depth and normals expert models (Taskonomy dataset),
considering both rgb input and mid-level embeddings of the experts. Com-
pared to another synthetic dataset (Hypersim), we observe a smaller distri-
bution shift than for Taskonomy, which contains real-world samples. We
also validate our assumptions by comparing two different splits of Replica.
For readability, we report MMD ×100.

domain shift in the input for the pre-trained experts on Taskonomy, both at
the rgb level but also through the eyes of the experts (depth and normals

columns). Notice that the Hypersim dataset is closer to Replica (compared
with Taskonomy) since both use synthetic data.

6.5.3 Comparisons with the experts

qualitative views for multiple tasks. In Fig. 33, we show the differ-
ences between the expert output, used as initial pseudo-ground truth for our
graph edges (Fig. 28-A), and the output of our CShift algorithm. Notice that
the output of CShift looks smoother and partially corrects the mistakes of the
expert model, adding significant value in the output.

qualitative results for tasks with gt. We compare next in Fig. 34

our results with the Experts, with respect to ground-truth. In the last column,
we show with green pixels where CShift outperform the Expert and with red
the ones where CShift is weaker. Notice that CShift improves the output at a
profound level, bringing in new information in the scene (see the bike in the
second row or even the walls in the third). This is due to the multiple different
source tasks for the ensembles’ in-edges.

comparison with other methods. In Tab. 17 we provide a quantitative
analysis of our method. Starting from pseudo-labels provided by the experts
(depth and normals), we improve their quality by a large margin both with
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Figure 33: Qualitative results on multiple tasks. On the first row, we show the experts’
output, used as pseudo-labels for training our edges. On the 2nd line we
show the output of our CShift. Green arrows point to places where CShift
adds significant value in the prediction. From left to right, we see how
CShift improves the representation for multiple tasks: super-pixel output
has less noise; semantic segmentation removes almost all pixels wrongly
classified as ceiling ones; surface normals are significantly corrected; depth
catches new details from the curtain; cartoonization output is also less
noisy, and on edge detection task it removes some of the noisy edges com-
ing from the floor texture.

an ensemble and with a direct link from rgb (except for Hypersim’s normals
where GT is extremely detailed, while our single edge is a simple UNet with 4.3
mil params). We achieve this performance over two CShift iterations, without
adding any supervised information and we also largely outperform the basic
mean ensemble. Also, notice that the direct edges in our graph significantly
improves over CShift iterations (in average, and individually, the direct edge
from rgb). Since we treat all tasks unitary, we also train edges with rgb as a
destination. Interestingly, the rgb reconstruction performance improves over
iterations.

6.6 concluding remarks
We present the consensus shift (CShift) algorithm in multi-task graphs, able

to learn unsupervised in novel domains, using as supervision the selective
consensus, among the multiple pathways reaching a given task node. The un-
supervised capability, fully connected structure, powerful ensemble selection
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Method Replica dtask ↓ Hypersim dtask ↓

depth normals rgb depth normals rgb

Expert [190] 14.58 8.30 - 15.11 9.10 -

It
er

1 Average of direct edges 14.32 9.34 6.33 16.91 12.55 11.34

Edge: rgb→ dtask 13.42 8.23 - 15.97 11.75 -

Mean Ensemble [92] 12.94 7.95 4.30 14.84 10.56 8.22

CShift 12.77 7.61 2.06 13.98 9.36 3.56

It
er

2 Average of direct edges 13.70 8.83 5.00 15.74 11.37 9.01

Edge: rgb→ dtask 12.98 7.95 - 15.03 10.09 -

Mean Ensemble 12.87 7.91 3.18 14.20 9.90 6.31

CShift 12.71 7.61 1.51 13.75 9.02 1.84

CShift Boost 12.8% 8.3% - 9.0% 0.9% -

Table 17: Quantitative results. We compare the L1 error of our method over each
iteration against the initial experts, on the destination tasks for which we
have GT annotations. CShift ensemble outperforms XTC experts on depth
and normals by a large margin, without any additional supervision. Even
single, direct edges (rgb → dtask) improve over iterations, achieving better
results compared with the experts in most of the cases (except for Hyper-
sim’s normals). With blue we represent the best single edge in the column
and with red the best ensemble. For readability, we show the L1 error ×100.

for creating pseudo-labels and then shifting them from one graph learning iter-
ation to the next, make our approach significantly different from related ones.
All key aspects of our approach (choice of ensemble selection, multi-task struc-
ture, and domain adaptation capabilities) are experimentally validated, while
the comparisons to related works prove superior capabilities in the unsuper-
vised learning case. We believe that CShift brings theoretically interesting and
practically valuable contributions in an area of research, that of multi-task un-
supervised learning, which is of major importance, but not sufficiently studied.

I propose next a model that integrates the findings from this chapter not
only under the spatial constraint, frame-by-frame, but also including the tem-
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Figure 34: Qualitative results on depth and surface normals, for which we have
ground truth annotations. We compare the Expert (col 2) with CShift (col
3). In the last column, we visually show the differences. With green are pix-
els for which the prediction is improved and with red the ones where the
CShift prediction is weaker. On the second line, we see how CShift adds a
bike in the scene, where initially in the Expert it is completely missing. This
shows that the tasks are interconnected and that CShift takes advantage of
their intrinsic links in an unsupervised manner, improving the results not
only numerically, but also bringing in new fundamental information ex-
tracted from the consensus of all tasks.

poral dimension. This way, the video object segmentation and tracking nodes
are integrated in the multi-task graph, and more, every task, in each frame
access the temporal information in order to provide better and more robust
representations.



7 F U T U R E W O R K

During my PhD work, I tried to understand the complexity of an object in a
video, focusing on its natural consistency in both space and time. I investigate
those aspects in the context of object tracking and segmentation tasks. I start
with a tracker solution composed of many diverse parts. We introduced an
algorithm to coordinate them to function together as a society, each part’s role
being monitored and evolving over time. For making it possible, we observe
and prove a mathematical property in our formulation that allows us to learn
many linear classifiers with only one closed-form equation. We observe that
one main limitation of our solution is linked to the formal definition of tracking:
the bounding boxes introduce a lot of noise. So combining this limitation with
our direction of better integrating time and space, we come with an approach
for object segmentation in video using spectral clustering in the space-time
volume of pixels. Our contribution here is finding a good approximation based
on Taylor expansion for power iterating in the video volume, proved both
theoretically and empirically. We claim that the main cluster in space-time
volume of the video is in fact the segmentation of the main object. So by
finding a better and more refined cluster we improve our initial segmentation.
We expand this solution to learn an ensemble over multiple inputs seen as
multiple-channels for power iteration. Our next contribution is using spectral
clustering in space-time on an intermediary task (video object segmentation)
significantly improves the tracking results.

7.1 multi-task graph of experts in space-time
After analyzing in-depth and proving the importance for each part of the

ensemble in STP, Chapter 3, we postulate the importance of a more refined rep-
resentation rather than the rough bounding box when tracking objects. So we
approached the segmentation task in SFSeg++, Chapter 4, and next integrate
the segmentation as an intermediary output in the tracking pipeline resulting
SFTrack++, Chapter 5.

116
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Figure 35: Consensus Shift over spatial and temporal nodes.

Next, the intuition was that if one single middle task was useful, having
more of them might bring additional information and value to the final predic-
tion. We successfully tested this hypothesis in CShift, Chapter 6 with image
tasks. So a natural step further is contouring the findings from CShift and
expanding the approach to time, passing from image-level to video. This is im-
portant because it will allow us to add more complex tasks (like video tracking
and segmentation) and because the edges will also capture temporal dependen-
cies, the graph being able to see more complex relations between the nodes.

7.1.1 Graph architecture baselines

There are multiple ways in which we can introduce the temporal dimension.
The biggest problem we need to consider is the amount of computation re-
quired to train the graph edges from the fully connected graph. In CShift, the
spatial only version of the graph, for 13 nodes, had 156 edges to train (13 ∗ 12).
There is great value in having an automatic selection-based algorithm for con-
sensus, because we don’t need to prune the graph edges by hand using prior
knowledge. So the spatio-temporal CShift will also have this characteristic. I
present next various directions to evaluate in a thorough ablation and summa-
rize them in Fig. 35.

a. space-time nodes The first obvious approach for expanding to time
is to transform the nodes. The input represents now multiple frames instead
of a single one. Those can be closed to the current moment in time (e.g. t−
1, t− 2, but there can also be a more distant sample t− p frame, maybe a more
confident one that would bring robustness in the formulation. This is by far the
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fittest solution from the number of edges point of view. For N tasks, we have
only N ∗ (N− 1) edges, increasing the number of parameters per edge (from
one map to k maps as input, where k is the number of frames in the volume).
A disadvantage of this approach could be that 3D convolutions do not capture
very well the temporal aspect.

b. per frame nodes In this configuration, we keep one node per frame
and multiple frames. So instead of a volume with k frames from the previous
approach, here we have k nodes, each with connections with all other tasks.
So for predicting Tj,t we need to learn the connections from Ti,t, Ti,t−1, ... Ti,t−k,
rgbt, rgbt−1, ... rgbt−k, where k is the number of frames in the past which we
keep as neighbours for the current one. So we have N ∗ (N− 1) ∗ k number of
edges for this approach. This architecture certainly will not scale for a large
number of edges and neighbour frames, but would give us an important clue
whether this is a better approach from the architecture point of view when
compared with the rest.

c. mixing the nodes In this variant, we plan to use temporal information
only for the current task, and for the rest we will use only the current frame.
Depending on the results, this might prove to be a fair compromise between
having many connections and a good performance in the spatio-temporal graph.

d. representation for the graph’s internal state Other architecture
variation would keep an internal representation of the previous frame for the
entire graph. With every new iteration, we take into account one step longer
paths in the graph. To summarize the information from the previous frame, we
could use a hidden state for each edge and concatenate them in a multi-channel
map. Then we bring this map back as input for each edge. This approach
doubles the total number of trainable edges in the graph (N ∗ (N− 1) ∗ 2).

e. using more experts Since there are multiple experts available for a
particular task, we can consider a node to be uniquely determined by an expert-
task combination. In consequence, for each fixed source task, given a destina-
tion task, we will learn one edge for each expert (as opposed to one edge per
task). Of course, this solution is costly from the resources point of view, but it
is useful to evaluate its performance. This will test if adding more experts in
the graph (for the same task) gives the model room for improvement.
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Figure 36: Combining CShift and SFSeg for space-time consistency, where tracking or
segmentation is the destination task.

7.1.2 Combining CShift with SFSeg

I propose next a way to take advantage of multi-task graph formulation ad-
vantages from CShift and SFSeg space-time consistency in object tracking and
segmentation tasks context. In SFSeg, we use unary and pairwise terms, like
presented in Chapter 4, Eq. 17. For unary terms, we always need to consider a
clustering representation (like outputs from segmentation and tracking), where
in each pixel we have a probability for that pixel to be part of the target object
cluster. Next, for pairwise terms, we can use any representation that helps
us better quantify the difference between any two pixels in the representation.
We used those channels in SFSeg, SFSeg++ and SFTrack++ approaches maps
with segmentation or tracking output, from one or multiple solutions, but hav-
ing the same meaning as the unary term. In theory, there is no restriction for
this other than using normalized distances, but we never explored this path.
So I propose analyzing this aspect in order to take advantage of multiple do-
main representation in the consistent spatial-temporal SFSeg. I would start by
using for pairwise terms the multi-task per frame improved representations
obtained from CShift, and next extract their spatial consistency combined with
the temporal aspect through SFSeg, like shown in Fig. 36.

Compared with the above space-time graph architecture baselines, this ap-
proach has limitations from the target task point of view. Those limitations
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arise from the fact that we can only apply it for tasks for which the output
represents a binary clusterization problem (like single object tracking or single
instance segmentation).



E P I LO G U E

ethical considerations
Video object tracking and segmentation tasks involve having access to a

dense video record. Even though the task purpose might be moral and use-
ful for society (e.g. monitor shoplifting and automatically trigger the alarm
instead of having a human watching the video), the fact that humans might
appear in the flow raises many privacy concerns. Also, continuously monitor-
ing a specific area (or more) is scary and can have severe consequences if used
abusively. This kind of abuse is possible mainly because the video stream is
a rich source of information. Hence, allowing a large amount of secondary
information (given the purpose task) to be recorded can lead to drifts from the
original motivation. Moreover, this kind of action and re-purposing depends
to a large extent on the current decision-maker. For instance, in the recent
Black Lives Matter protest in 2020 factual examplethere were abusive punishments applied to
those that only participated, rather than acting violent (which was the original
purpose for having cameras in the public domain).

For those reasons and many more other examples expanded even at the
level of entire countries, it is clear that tracking poses ethical concerns, and we
should look carefully at the impact when designing this kind of technology.
I, together with several patentBitdefender colleagues with an academic contribution
in the field of cryptography, have a patent-pending application for preserv-
ing privacy in such a system. We propose a theoretical guaranteed solution
that enables computations over encrypted data. In particular, a valid usecase
is predicting instance segmentation over multiple users, where each user can
decrypt only his/her part of the result.

homomorphic encryption It was shown that deep models can work un-
der homomorphic encryption layer [23], ensuring computations over encrypted
data, protecting the user data and giving guaranties that the server can not see
any bit of decrypted input information or the deep model result over the input.

technology readiness level There is a lot of research happening now at
the intersection of those two fields: cryptography and AI for privacy-preserving
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Figure 37: Patent Pending for Privacy Preserving Image Distribution.

solutions, both at large stakeholders in the industry like Google, Facebook, Mi-
crosoft, Amazon, Apple, NVIDIA, but also in the startups, where dedicated
hedge funds focus on this. But from the technology point of view, the results
are yet in early stages, with unfeasible speeds and model dimensions for real-
time guaranties (20 layers neural network on a single MNIST encrypted image
takes 13 seconds on a basic CPU).

patent pending We come up with a solution to use the homomorphic en-
cryption scheme in the context of having multiple objects in the monitored
scene, and multiple users that need to access different parts in the video’s
space-time volume. For instance, let’s suppose we have a monitoring system
installed in a kindergarten that triggers alerts for bullying cases. The parents
should only receive information about their child. Moreover, the surveillance
officer should not see the decrypted video flow (unless an alert is raised). I
show in Fig. 37 a snippet of our proposed system.
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